

Travelling S(alesman|cientist) Problem (TSP) **Goal?** Learn heuristic algorithms automatically! offer Why? Problem is (NP-)hard, development costly! How? 'Translate' problem into solution... Math? Travelling Scientist Problem • Instance $s = ((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n))$ Solution $\pi = (\pi_1, \pi_2, ..., \pi_n)$ e.g. (3,1,2,4) Pointer Networks (PN) (Vinyals et al., 2015) • Model $p_{\theta}(\pi|s) = \prod_{t=1}^{n} p_{\theta}(\pi_t|s, \pi_{1:t-1})$

- Last node (where am I?) \bullet
- Mask (what is already visited?)

References

[1] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016. [2] M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takác. Reinforcement learning for solving the vehicle routing problem. arXiv preprint arXiv:1802.04240, 2018. [3] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training for image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7008–7024, 2017.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

[5] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information Processing Systems, pages 2692–2700, 2015.

UNIVERSITY OF AMSTERDAM ORTEC AMAB Attention, Learn to Solve Routing Problems!

Wouter Kool, Herke van Hoof & Max Welling

Attention Is All You Need (Vaswani et al., 2017)										
	$\left(\widehat{\boldsymbol{h}}_{i}^{(\ell-1)} + \mathrm{MHA}_{i}^{\ell} \left(\widehat{\boldsymbol{h}}_{i} + \mathrm{FF}_{i}^{\ell} \left(\widehat{\boldsymbol{h}}_{i} \right) \right) \right)$	$oldsymbol{h}_1^{(\ell-1)}$,, $oldsymbol{h}_n^{(\ell-1)} ight)$								
$q_i = W^Q h$ $d_{ij} = \frac{\boldsymbol{q}_i^T \boldsymbol{k}_j}{\sqrt{d_k}}$	$\mathbf{k}_{i} = W^{K} \mathbf{h}_{i}$ $a_{ij} = \frac{e^{u_{ij}}}{\sum_{j'} e^{u_{j'}}}$	$\boldsymbol{v}_{i} = W^{V} \boldsymbol{h}_{i}$ $\overline{j'} \boldsymbol{h}'_{i} = \sum_{j} a_{ij} \boldsymbol{v}_{j}$								
ИНА _і (h 1, .	$\dots, \boldsymbol{h}_n) = \sum_m W_m^O$	h' _{im}								
ge ion query	Compatibility Identity / reference	Example: $\pi = (3, 1, 2, 4)$								

Decoder t =Decoder t = 4

Travelling Salesman Orienteering Problem (TSP) GE Minimize length Visit all nodes How to train? Let's REINFORCE... said Bello et al. (2016) , Good baseline should estimate difficulty of tour length baseline • Exp. moving avg. (boring!) significance α 2: Init $\boldsymbol{\theta}, \ \boldsymbol{\theta}^{BL} \leftarrow \boldsymbol{\theta}$ • Critic (try it!) 3: for epoch = 1, ..., E do $step = 1, \ldots, T$ do $s_i \leftarrow \text{RandomInstance}() \ \forall i \in \{1, \dots, B\}$ Rollout (but greedy!) $\boldsymbol{\theta} \leftarrow \operatorname{Adam}(\boldsymbol{\theta}, \nabla \mathcal{L})$ Similar to 10° end for Rennie et al. (2017) if OneSidedPairedTTest $(p_{\theta}, p_{\theta^{BL}}) < \alpha$ then $\boldsymbol{\theta}^{BL} \leftarrow \boldsymbol{\theta}$ 13: end if 14: end for AM vs. PN & baselines (TSP20) PN / Critic ••• PN / Rollout — AM / Critic

20

Problem (OP)

Maximize total prize Max length constraint

(Stochastic) Prize Collecting TSP ((S)PCTSP)

Train for each problem, *same hyperparameters*!

	Method	Obj.	n = 20 Gap	Time	Obj.	n = 50 Gap	Time	Obj.	n = 100 Gap	Time
TSP	Concorde LKH3 Gurobi Gurobi (1s)	$ \begin{array}{c} 3.84 \\ 3.84 \\ 3.84 \\ 3.84 \\ 3.84 \end{array}$	$\begin{array}{c} 0.00\% \\ 0.00\% \\ 0.00\% \\ 0.00\% \end{array}$	(1m) (18s) (7s) (8s)	$5.70 \\ 5.70 \\ 5.70 \\ 5.70 \\ 5.70$	$\begin{array}{c} 0.00\% \\ 0.00\% \\ 0.00\% \\ 0.00\% \end{array}$	(2m) (5m) (2m) (2m)	7.76 7.76 7.76	0.00% 0.00% 0.00% -	(3m) (21m) (17m)
	Nearest Insertion Random Insertion Farthest Insertion Nearest Neighbor Vinyals et al. (gr.) Bello et al. (gr.)	$\begin{vmatrix} 4.33 \\ 4.00 \\ 3.93 \\ 4.50 \\ 3.88 \\ 3.89 \end{vmatrix}$	$12.91\% \\ 4.36\% \\ 2.36\% \\ 17.23\% \\ 1.15\% \\ 1.42\%$	(1s) (0s) (1s) (0s)	$\begin{array}{c} 6.78 \\ 6.13 \\ 6.01 \\ 7.00 \\ 7.66 \\ 5.95 \end{array}$	$19.03\% \\ 7.65\% \\ 5.53\% \\ 22.94\% \\ 34.48\% \\ 4.46\%$	(2s) (1s) (2s) (0s)	9.46 8.52 8.35 9.68 8.30	$21.82\% \\ 9.69\% \\ 7.59\% \\ 24.73\% \\ - \\ 6.90\%$	(6s (3s (7s (0s
	Dai et al. Nowak et al. EAN (greedy) AM (greedy)	3.89 3.93 3.86 3.85	$\begin{array}{c} 1.42\% \\ 2.46\% \\ 0.66\% \\ \textbf{0.34}\% \end{array}$	(2m) (0s)	5.99 5.92 5.80	5.16% - 3.98% 1.76 %	(5m) (2s)	8.31 8.42 8.12	7.03% - 8.41% 4.53 %	(8m (6s
	OR Tools Chr.f. + 2OPT Bello et al. (s.) EAN (gr. + 2OPT) EAN (sampling) EAN (s. + 2OPT) AM (sampling)	3.85 3.85 3.85 3.84 3.84 3.84 3.84	0.37% 0.37% - 0.42% 0.11% 0.09% 0.08%	(4m) (5m) (6m) (5m)	5.80 5.79 5.75 5.85 5.77 5.75 5.73	$\begin{array}{c} 1.83\% \\ 1.65\% \\ 0.95\% \\ 2.77\% \\ 1.28\% \\ 1.00\% \\ 0.52\% \end{array}$	(26m) (17m) (32m) (24m)	7.99 8.00 8.17 8.75 8.12 7.94	$\begin{array}{c} 2.90\% \\ - \\ 3.03\% \\ 5.21\% \\ 12.70\% \\ 4.64\% \\ \textbf{2.26}\% \end{array}$	(3h) (56m) (5h) (1h)
CVRP	Gurobi LKH3	$ \begin{array}{c} 6.10 \\ 6.14 \end{array} $	0.00% 0.58%	(3hi)	10.38	- 0.00%		15.65	- 0.00%	(13h)
	RL (greedy) AM (greedy)	$ 6.59 \\ 6.40 $	8.03% 4.97%	(2II)	10.38 11.39 10.98	9.78% 5.86 %	(7h) (3s)	13.03 17.23 16.80	10.12% 7.34 %	(1311
	RL (beam 10) Random CW Random Sweep OR Tools AM (sampling)	6.40 6.81 7.08 6.43 6.25	$\begin{array}{c} 4.92\%\\ 11.64\%\\ 16.07\%\\ 5.41\%\\ \mathbf{2.49\%}\end{array}$	(6m)	11.15 12.25 12.96 11.31 10.62	$7.46\% \\18.07\% \\24.91\% \\9.01\% \\2.40\%$	(28m)	16.96 18.96 20.33 17.16 16.23	8.39% 21.18% 29.93% 9.67% 3.72 %	(2h
SDVRP	RL (greedy) AM (greedy)	6.51 6.39	4.19% 2.34%	(1s)	11.32 10.92	6.88% 3.08 %	(4s)	17.12 16.83	5.23% 3.42%	(11s
	RL (beam 10) AM (sampling)	6.34 6.25	1.47% 0.00 %	(9m)	11.08 10.59	4.61% 0.00 %	(42m)	16.86 16.27	3.63% 0.00 %	(3h
OP (distance)	Gurobi Gurobi (1s) Gurobi (10s) Gurobi (30s) Compass	$\begin{array}{ } 5.39 \\ 4.62 \\ 5.37 \\ 5.38 \\ 5.37 \end{array}$	$\begin{array}{c} 0.00\% \\ 14.22\% \\ 0.33\% \\ 0.05\% \\ 0.36\% \end{array}$	(16m) (4m) (12m) (14m) (2m)	$1.29 \\ 10.96 \\ 13.57 \\ 16.17$	$\begin{array}{c} -\\92.03\%\\32.20\%\\16.09\%\\0.00\%\end{array}$	(6m) (51m) (2h) (5m)	$0.58 \\ 1.34 \\ 3.23 \\ 33.19$	$-\\98.25\%\\95.97\%\\90.28\%\\0.00\%$	(7m (53m (3h (15m
	Tsili (greedy) AM (greedy)	4.08 5.19	$\begin{array}{c} 24.25\% \\ \mathbf{3.64\%} \end{array}$	(4s) (0s)	12.46 15.64	22.94% 3.23 %	(4s) (1s)	25.69 31.62	$22.59\% \ 4.75\%$	(5s (5s
	GA (Python) OR Tools (10s) Tsili (sampling) AM (sampling)	5.12 4.09 5.30 5.30	$\begin{array}{c} 4.88\% \\ 24.05\% \\ 1.62\% \\ \textbf{1.56\%} \end{array}$	(10m) (52m) (28s) (4m)	10.90 15.50 16.07	32.59% - 4.14% 0.60 %	(1h) (2m) (16m)	14.91 30.52 32.68	55.08% - 8.05% 1.55 %	(5h (6m (53m
PCTSP	Gurobi Gurobi (1s) Gurobi (10s) Gurobi (30s)	$ \begin{array}{c c} & 3.13 \\ & 3.14 \\ & 3.13 \\ & 3.13 \\ & 3.13 \\ \end{array} $	$0.00\% \\ 0.07\% \\ 0.00\% \\ 0.00\%$	(2m) (1m) (2m) (2m)	4.54 4.48	- 1.36% 0.03%	(32m) (54m)		- - - -	
	AM (greedy)	3.18	1.62 %	(0s)	4.60	2.66%	(2s)	6.25	4.46 %	(5s
	ILS (C++) OR Tools (10s) OR Tools (60s) ILS (Python 10x) AM (sampling)	3.16 3.14 3.13 5.21 3.15	$\begin{array}{c} 0.77\% \\ 0.05\% \\ \textbf{0.01\%} \\ 66.19\% \\ 0.45\% \end{array}$	(16m) (52m) (5h) (4m) (5m)	$\begin{array}{r} 4.50 \\ 4.51 \\ 4.48 \\ 12.51 \\ 4.52 \end{array}$	$\begin{array}{c} 0.36\% \\ 0.70\% \\ \textbf{0.00\%} \\ 179.05\% \\ 0.74\% \end{array}$	(2h) (52m) (5h) (3m) (19m)	$5.98 \\ 6.35 \\ 6.07 \\ 23.98 \\ 6.08$	$\begin{array}{c} \textbf{0.00\%} \\ 6.21\% \\ 1.56\% \\ 300.95\% \\ 1.67\% \end{array}$	(12h (52m (5h (3m (1h
SPCTSP	REOPT (all) REOPT (half) REOPT (first) AM (greedy)	3.34 3.31 3.31 3.26	2.38% 1.38% 1.60% 0.00 %	(17m) (25m) (1h) (0s)	$\begin{array}{c} 4.68 \\ 4.64 \\ 4.66 \\ 4.65 \end{array}$	$\begin{array}{c} 1.04\% \\ \textbf{0.00\%} \\ 0.44\% \\ 0.33\% \end{array}$	(2h) (3h) (22h) (2s)	6.22 6.16 6.32	1.10% 0.00 % - 2.69%	(12h (16h (5s

Recults

Vehicle Routing Problem (VRP)

Minimize length Visit all nodes Total route demand \leq vehicle capacity