Wouter Kool, Herke van Hoof \& Max Welling

Travelling S(alesman | cientist) Problem (TSP)
Goal? Learn heuristic algorithms automatically!
Why? Problem is (NP-)hard, development costly! How? ‘Translate' problem into solution...

Math?

Travelling Scientist Problem

- Instance $s=\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$
- Solution $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \ldots \pi_{n}\right)$ e.g. $(3,1,2,4)$

$$
\begin{aligned}
& \text { Pointer Networks (PN) } \\
& \text { (Vinyals et al., 2015) }
\end{aligned}
$$

Attention Model (AM)

Encoder

- Compute embeddings of all nodes
- Attention based message passing

Decoder

- Output one node at a time (probabilistic, softmax logits = attention)
- Based on context:
- Graph (what is the problem?)
- First node (where to go?)

$$
p_{i}=p_{\theta}\left(\pi_{t}=i \mid s, \pi_{1, t-1}\right)=\frac{e^{\left(u^{(u)}\right)}}{\sum_{j} e^{u_{(0)}()}}
$$

- Last node (where am l?)
- Mask (what is already visited?)

References

Minimize length Visit all nodes
(Stochastic) Prize Collecting TSP ((S)PCTSP)

Minimize length + penalties of unvisited nodes Collect min. total prize

Vehicle Routing Problem (VRP) See also Nazari et al. (2018)

Minimize length Visit all nodes Total route demand \leq vehicle capacity
Train for each problem, same hyperparameters!
ϕ_{0}

How to train?
Let's REINFORCE... said Bello et al. (2016)

AM vs. PN \& baselines (TSP20)

Results

