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REINFORCE with replacement

* Multiple samples for a single datapoint (e.g. instance, source sentence)

 Other samples can be used as baseline (unbiased)
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REINFORCE without replacement

 Samples without replacement are not independent!

* Include importance weights, dependent on sampling threshold k (unbiased)
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* Include a ‘baseline’ B(s) = 3, 22 ) f(y’) (unbiased)
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Stochastic Beam Search (kool et al., 2019b)

Stochastic Beams and Where to Find Them
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Figure 1. Example of the Gumbel-Top-k trick on a tree, with £ = 3. The bars next to the leaves indicate the perturbed log-probabilities
(G,, while the bars next to internal nodes indicate the maximum perturbed log-probability of the set of leaves S in the subtree rooted at
that node: Gy = maxies Gy, ~ Gumbel(¢s) with ¢s =log ), s exp ¢;. The bar is split in two to illustrate that Gy = ¢s + G's.
Numbers in the nodes represent pg (ys ) = expos = ), cs €XD ¢i, the probability of the partial sequence y°. Numbers at edges
represent the conditional probabilities for the next token. The shaded nodes are ancestors of the top k leaves with highest perturbed
log-probability G4,. These are the ones we actually need to expand. In each layer, there are at most k£ such nodes, such that we are
guaranteed to construct all top k leaves by expanding at least the top k nodes (ranked on (G4 ) in each level (indicated by a solid border).
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Method for sampling sequences without replacement

Experiment

* Learn to predict tour (sequence) for TSP (Kool et al., 2019a)

* Estimators:
* Single sample with a batch baseline
* Single sample with greedy rollout baseline (Kool et al., 20193)
 Multiple samples with replacement (WR) with local baseline
 Multiple samples without replacement (WOR) with local baseline
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OPTIMIZE YOUR WORLD Machine Learning Lab

* Take multiple samples per datapoint

 Encoder-decoders: run encoder only once
 Data- and computational efficiency
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Problem (TSP)

Learn heuristic algorithms automatically!

Problem is (NP-)hard, development costly!

‘Translate’ problem into solution...
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(Kool et al., 2019a)

Results for TSP (20 nodes)
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(a) k = 4, performance vs. training steps
k=8
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(c) k = 8, performance vs. training steps
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(b) k = 4, performance vs. number of instances
k=8
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(d) £ = 8, performance vs. number of instances

Figure 1: Performance measured as validation set optimality gap during training. Raw results are
light, smoothed results are darker (2 random seeds per setting). REINFORCE 1is used with replace-
ment (WR) and without replacement (WOR) using £ = 4 (top row) or £ = 8 (bottom row) samples

per instance, and a local baseline based on the

k samples for each instance. We compare against

REINFORCE using one sample per instance, either with a baseline that is the average of the batch,
or the strong greedy rollout baseline by Kool et al. (2019a) that requires an additional rollout of the

model.

Conclusion
 Requires less data for same

performance

 Sampling without replacement increases performance
* Especially well suited for structured prediction settings



