Deep Policy

Dynamic Programming

for Vehicle Routing Problems

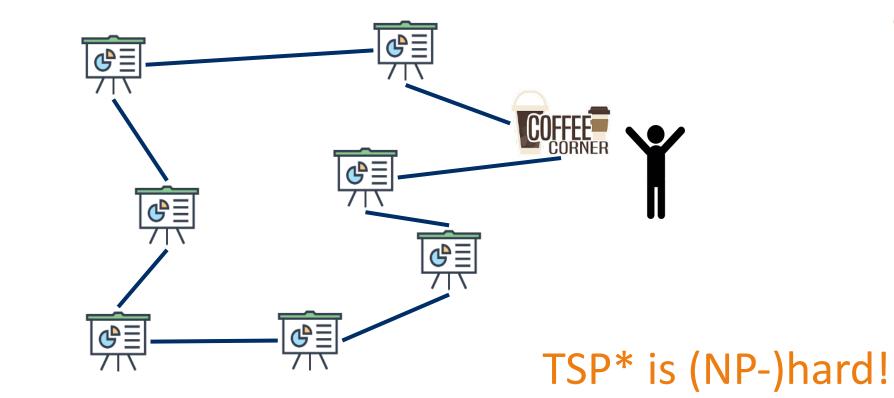
Wouter Kool

Herke van Hoof

Joaquim Gromicho

Max Welling

Travelling Scientist Problem (TSP)



π

(k!)4

Kool et al., 2019

UNIVERSITY OF AMSTERDAM

2√2 9801

ex

What does it mean?

Finding *optimal* solutions for *all* problem instances

Finding acceptable solutions for relevant problem instances

MISSION:

JSSIBLE

* unless P = NP

VIL SION:

ex

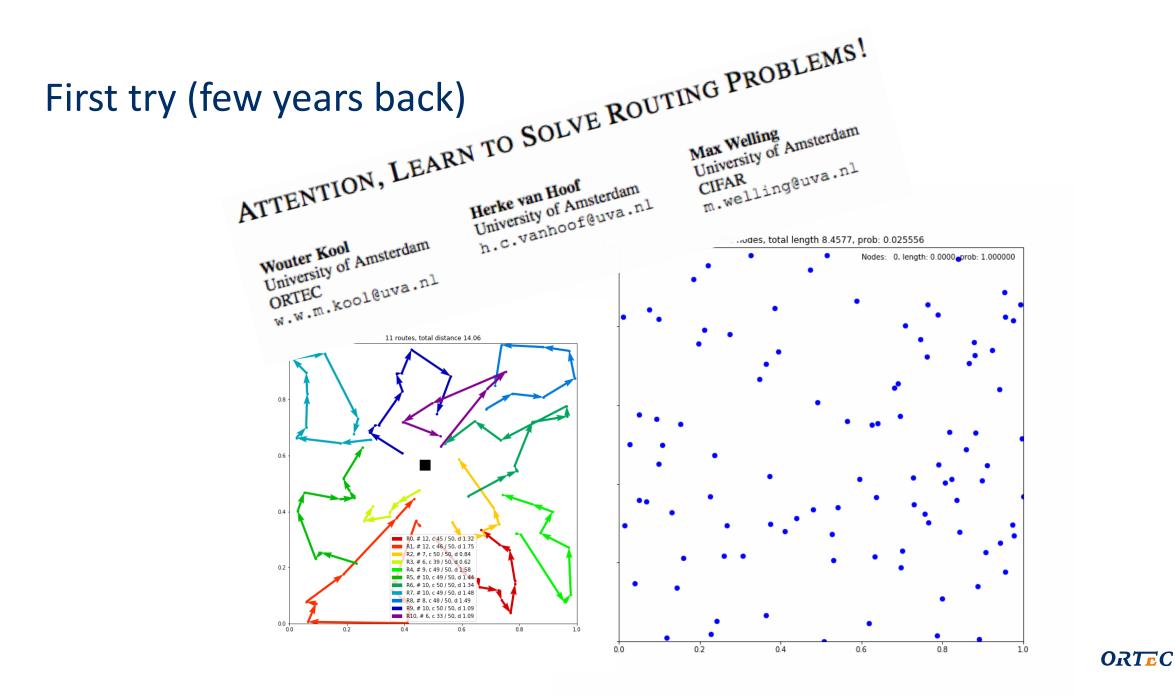
π

 We
 JS
 H드 기RISTICS

 `an b seen as 'rules of thumb'

'next location should be nearby'

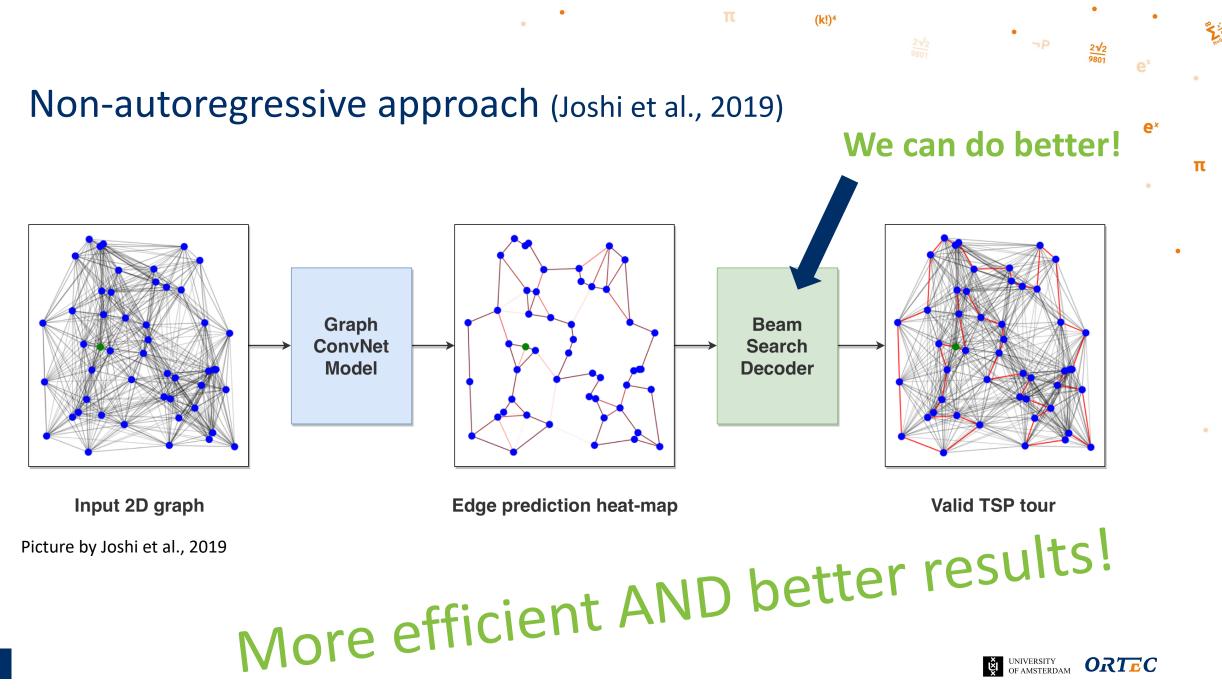
(k!)4

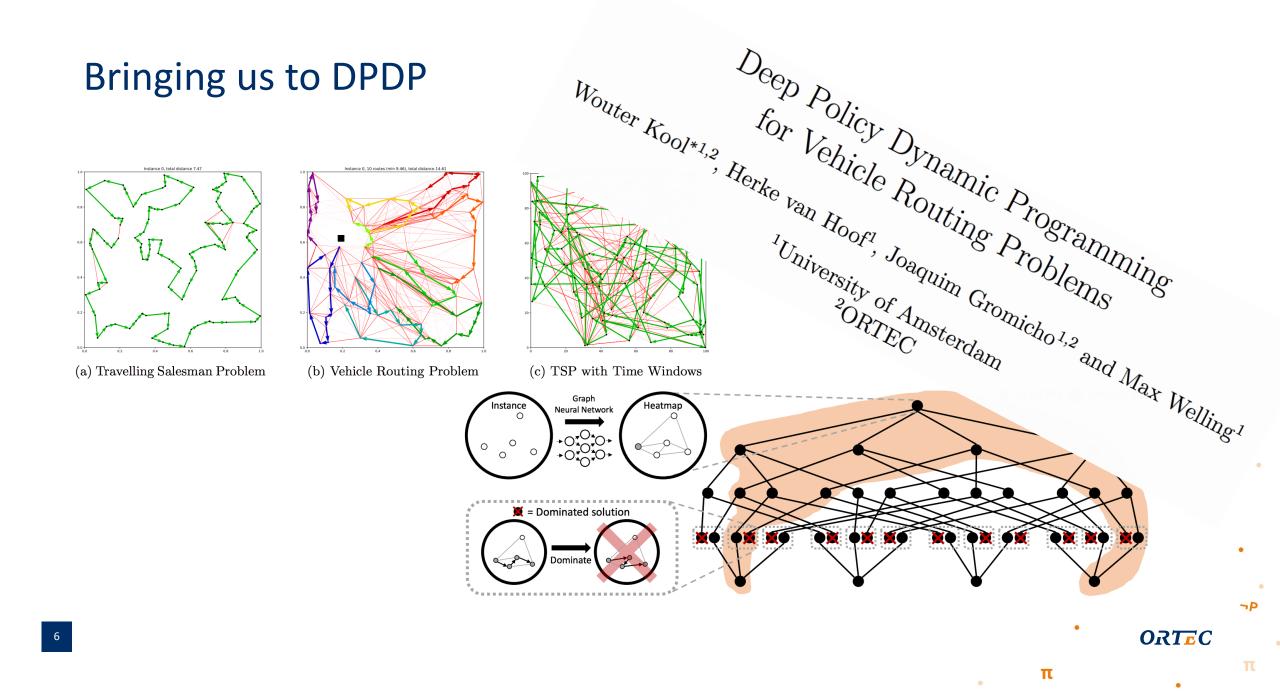


•

π

¬P





...that restricts a dynamic program to promising parts of the state space...

...using a heatmap of promising edges predicted by a neural network!

ORTEC

-P

•

Small side note...

If you like 'neural vehicle routing'

.

ORTEC

٦P

•

(k!)

π

 $\sum_{n!}^{x^n}$

-P

ORTEC

2√2 9801

Recent Advances in Deep Learning for Routing Problems

Developing neural network-driven solvers for combinatorial optimization problems such as the Travelling Salesperson Problem have seen a surge of academic interest recently. This blogpost presents a **Neural Combinatorial Optimization** pipeline that unifies several recently proposed model architectures and learning paradigms into one single framework. Through the lens of the pipeline, we analyze recent advances in deep learning for routing problems and provide new directions to stimulate future research towards practical impact.

Chaitanya K. Joshi, Rishabh Anand Jan 12, 2022 · 20 min read

https://www.chaitjo.com/post/deep-learning-for-routing-problems/

9

Starting July 1st...

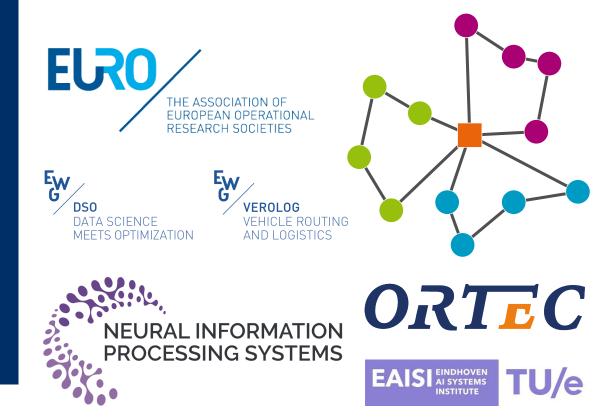
Goal: bring together

Operations Research and *Machine Learning*

to solve a *static* and *dynamic* VRP with time windows!

10

EURO Meets NeurIPS 2022 Vehicle Routing Competition



More info? https://euro-neurips-vrp-2022.challenges.ortec.com/

The technical part

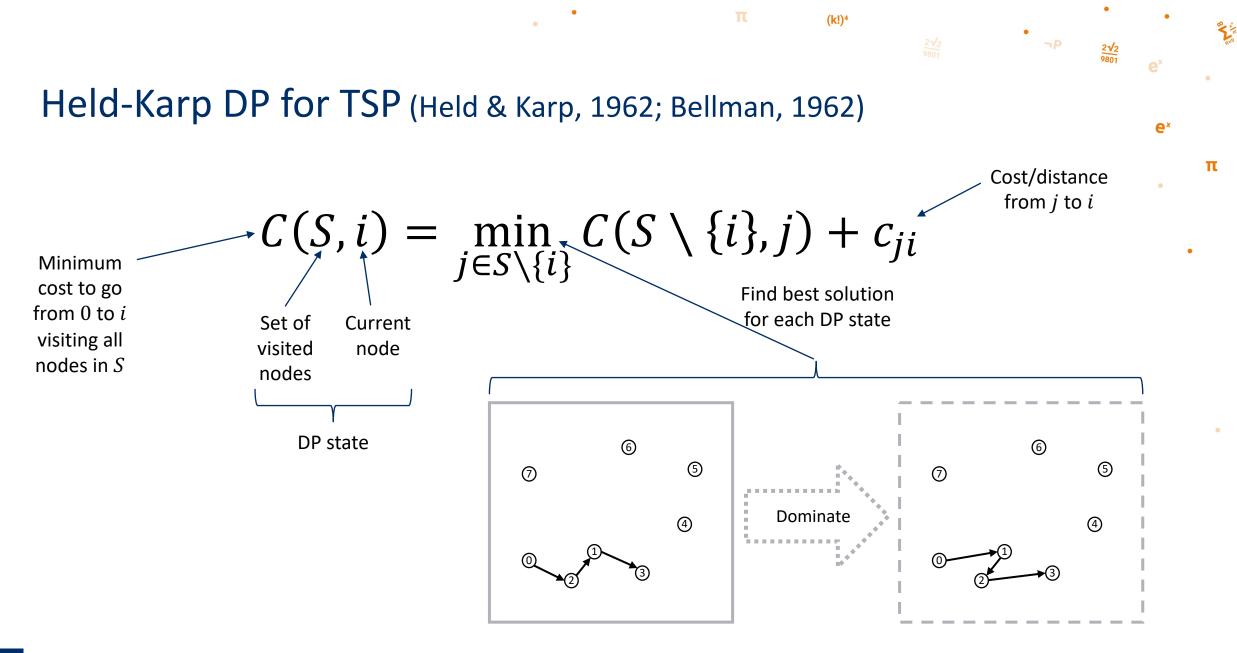
.

UNIVERSITY OF AMSTERDAM

٦P

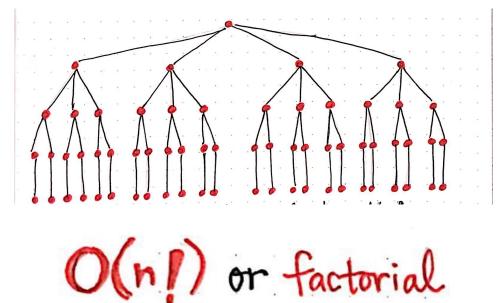
•

 $(k!)^4$



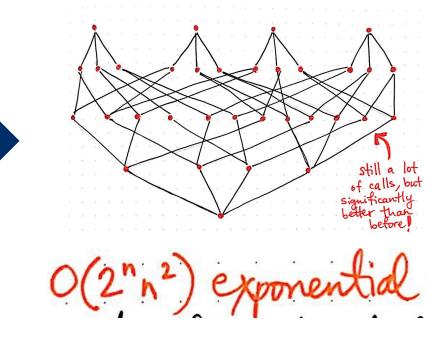
UNIVERSITY OF AMSTERDAM Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Brute-force (forward view)



DP (top-down or backward view)

(k!)4

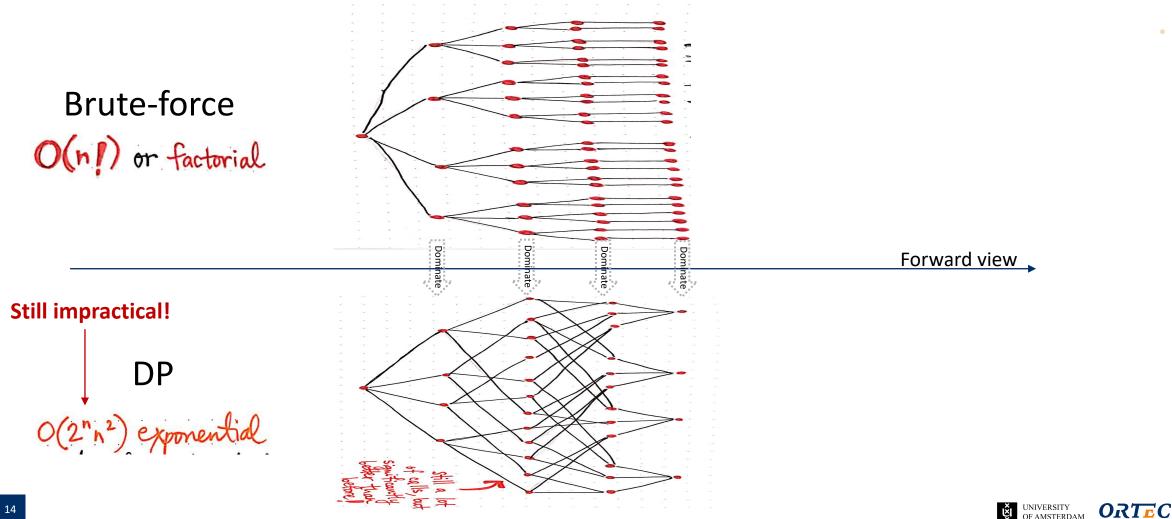


ex

π

Artwork by Vaidehi Joshi, https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd

Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)



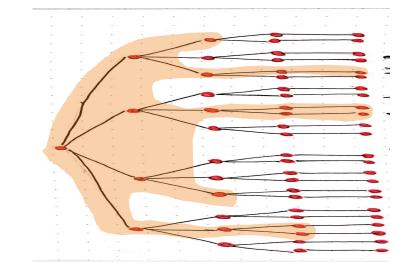
(k!)4

<u>2√2</u> 9801

ex

Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Beam search *O(Bn)* or *linear*

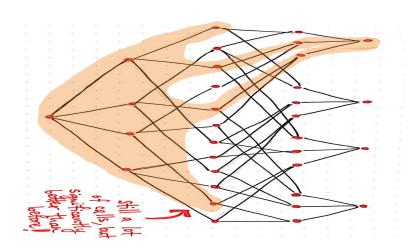


We need a good policy to restrict the search space!

(k!)4

Forward view

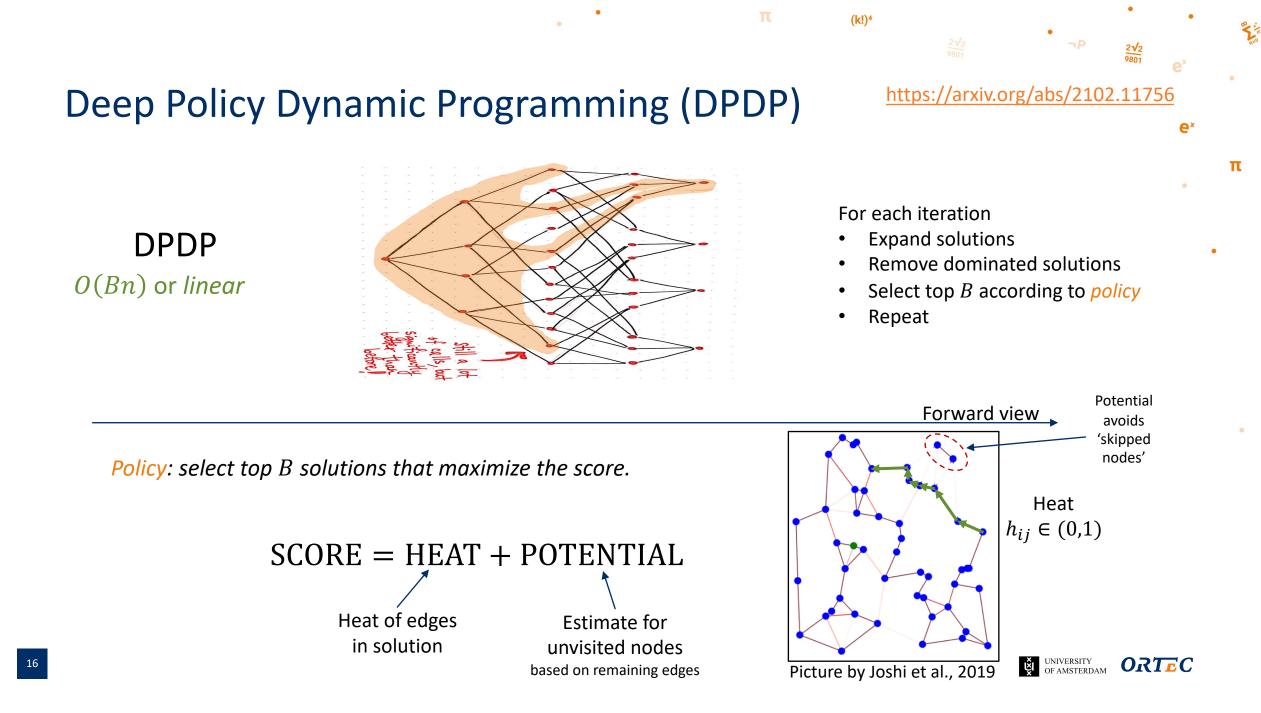
Restricted DP *O(Bn)* or *linear*

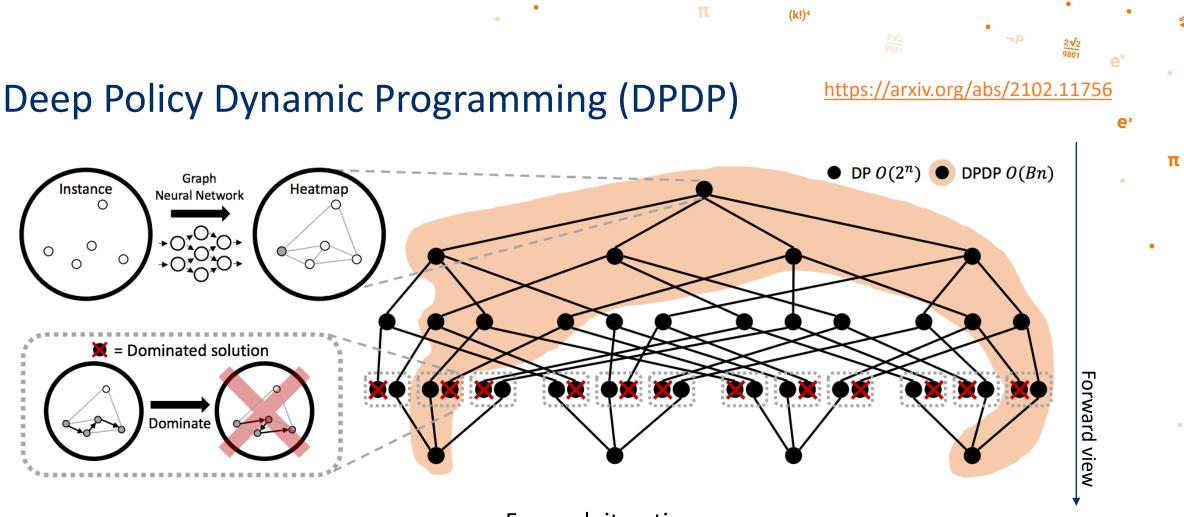


Malandraki & Dial, 1996 Gromicho et al., 2012

2√2 9801

ex



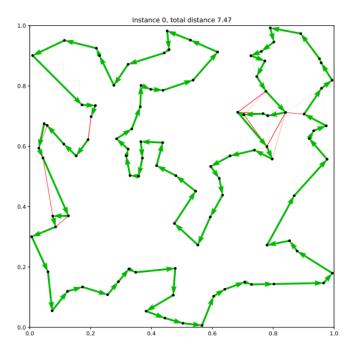


O(Bn) or linear

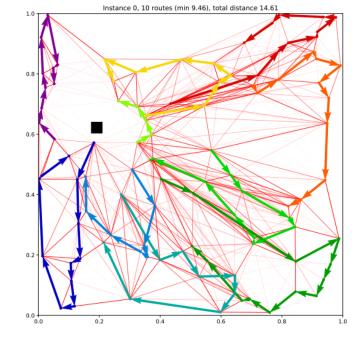
For each iteration

- Expand solutions
- Remove dominated solutions
- Select top *B* according to *policy*
- Repeat

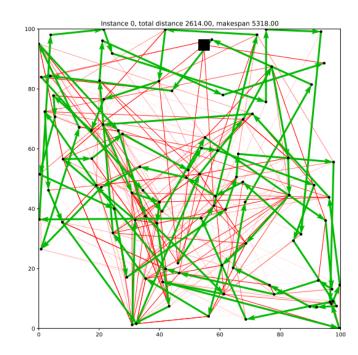
Experiments



(a) Travelling Salesman Problem



(b) Vehicle Routing Problem



(c) TSP with Time Windows

π

-P

π

ORTEC

Results (TSP/VRP)

Table 1: Mean cost, gap and *total time* to solve 10000 TSP/VRP test instances.

π

(k!)4

Problem	TSP100			VRP100			
Method	Cost	Gap	TIME	Cost	Gap	TIME	
Concorde [2]	7.765	0.000 %	6м				
Hybrid Genetic Search [63, 62]				15.563	0.000~%	6н11м	
Gurobi [24]	7.776	0.151~%	31M				
LKH [27]	7.765	0.000~%	$42 \mathrm{M}$	15.647	0.536~%	12 H 57 M	
GNN HEATMAP + BEAM SEARCH [32]	7.87	1.39~%	40м				
Learning 2-opt heuristics [11]	7.83	0.87~%	$41 \mathrm{M}$				
Merged GNN Heatmap + MCTS [19]	$ 7.764^* $	0.04~%	4м + 11м				
Attention Model + Sampling [36]	7.94	2.26~%	$1 \mathrm{H}$	16.23	4.28~%	2H	
Step-wise Attention Model [67]	8.01	3.20~%	29s	16.49	5.96~%	39s	
ATTN. MODEL + COLL. POLICIES $[34]$	7.81	0.54~%	12H	15.98	2.68~%	$5 \mathrm{H}$	
Learning improv. heuristics [66]	7.87	1.42~%	2H	16.03	3.00~%	$5 \mathrm{H}$	
Dual-Aspect Coll. Transformer [45]	7.77	0.09~%	$5 \mathrm{H}$	15.71	0.94~%	$9 \mathrm{H}$	
Attention Model $+$ POMO [37]	7.77	0.14~%	$1\mathrm{M}$	15.76	1.26~%	2M	
NeuRewriter [9]				16.10	3.45~%	1H	
Dynamic Attn. Model $+$ 2-opt [54]				16.27	4.54~%	6н	
Neur. Lrg. Neighb. Search [30]				15.99	2.74~%	$1 \mathrm{H}$	
Learn to improve [43]				$ 15.57^* $	-	4000н	
DPDP 10K	7.765	0.009 %	10м + 16м	15.830	1.713~%	10м + 50м	
DPDP 100K	7.765	0.004~%	10м + 2н35м	15.694	0.843~%	10м + 5н48м	
DPDP 1M				15.627	0.409~%	10м + 48н27м	

•

2√2 9801

e×

ex

π

•

•

Results (TSP with time windows)

Table 3: Mean cost, gap and *total time* to solve TSPTW100 instances.

π

(k!)4

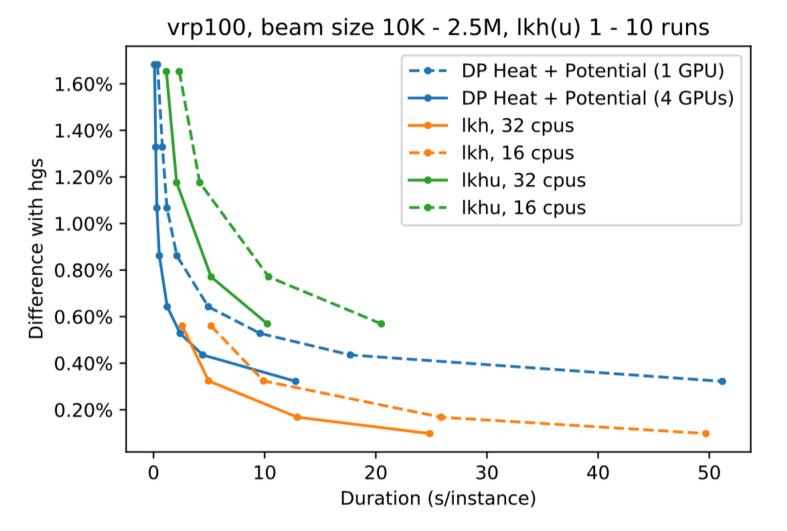
Problem	SMALL 7	TIME WINI	DOWS [8]	(100 inst.)	LARGE TI	ME WINDO	ws [12	2] (10K inst.)
Method	Cost	Gap	FAIL	TIME	Cost	Gap	FAIL	Time
GVNS 30x [12]	5129.58	0.000~%		7s	2432.112	0.000~%		$37 \mathrm{M} 15 \mathrm{s}$
GVNS $1x [12]$	5129.58	0.000~%		< 1s	2457.974	1.063~%		1 M4S
LKH $1x [27]$	5130.32	0.014~%	1.00~%	5 M 48 s	2431.404	-0.029 $\%$		34 H 58 M
BAB-DQN $*$ [8]	5130.51	0.018~%		25H				
ILDS-DQN $*$ [8]	5130.45	0.017~%		25H				
DPDP 10K	5129.58	0.000~%		6s + 1s	2431.143	-0.040 %		10M + 8M7s
DPDP 100K	5129.58	0.000~%		6s + 1s	2430.880	- 0.051 %		10м + 1н16м

٠

<u>2√2</u> 9801

ex

Quality vs. computation



π

(k!)4

Ž

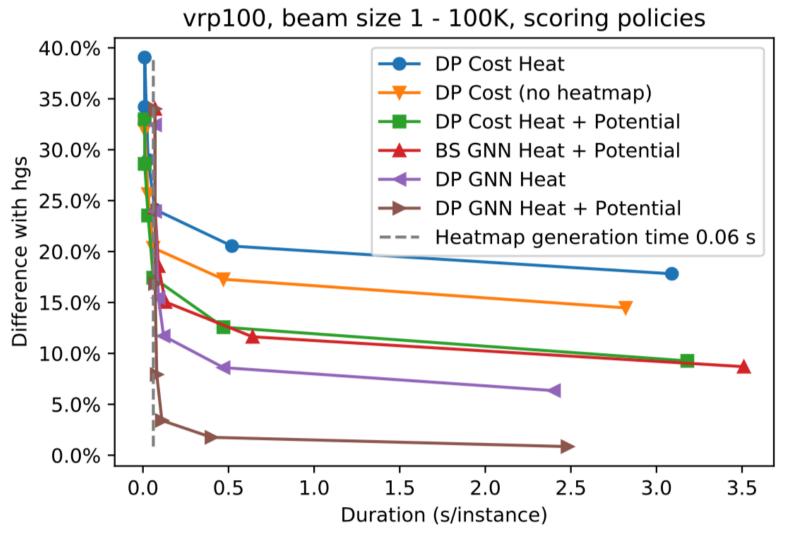
π

2√2 9801

e'

e^x

Ablations



π

(k!)4

UNIVERSITY OF AMSTERDAM 3

π

2√2 9801

e'

ex

Deep Policy Dynamic Programming (DPDP)

• DP is flexible framework for many VRP variants e.g. time windows

- Suitable for GPU implementation
- Natural trade-off compute vs. performance -> asymptotically optimal
- Supervised training based on example solutions
- Test time: only evaluate NN once!

https://arxiv.org/abs/2102.11756

6,

