
Optimization of two-phase methods using simple
feedback mechanisms

W. Kool

VU University
Amsterdam

ORTEC
Zoetermeer



Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion



Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion



Introduction

Two-phase methods

I First phase solves part of the problem

I Second phase solves other part of the problem, given solution
from first phase

I Overall solution is at most conditionally optimal given
decisions in first phase

Examples

I First create clusters/regions/areas, then create routes

I Create timetable/routes, then assign drivers/crews

I More than two phases can be regarded as nested two-phase
methods



Introduction

Two-phase methods

I First phase solves part of the problem

I Second phase solves other part of the problem, given solution
from first phase

I Overall solution is at most conditionally optimal given
decisions in first phase

Examples

I First create clusters/regions/areas, then create routes

I Create timetable/routes, then assign drivers/crews

I More than two phases can be regarded as nested two-phase
methods



Introduction

Idea

I There must be some ‘cost metric’ c1 for first phase which, if
optimized, results in intermediate solution that leads to global
optimum

I Start with a priori belief c̃1 of c1 and update c̃1 based on
observations

I More precisely, let c̃1 exactly represent last observed solution

I Stop if c̃1 is no longer updated (so fixed point iteration)



Introduction

Instance x , intermediate solution y = F1(x , c1), solution
z = F2(x , y)

Phase 1

P
h

as
e

2

Z(y)

Z (x)

Y (x)

y

z

Figure: Visualization of domains



Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion



Framework

Notation

I Instance x , intermediate solution y ∈ Y (x), solution
z ∈ Z (y) ⊆ Z (x)

I Cost metric c1 and c2 = c for phase 1 and 2

I Optimization methods F1(x , c1) and F2(x , y , c2)

I c2 = c fixed, so F2(x , y) = F2(x , y , c2)

Assumptions

I F1(x , c1) = arg miny∈Y (x) c1(x , y)

I F2(x , y) = arg minz∈Z(y) c(x , z)



Framework

Notation

I Instance x , intermediate solution y ∈ Y (x), solution
z ∈ Z (y) ⊆ Z (x)

I Cost metric c1 and c2 = c for phase 1 and 2

I Optimization methods F1(x , c1) and F2(x , y , c2)

I c2 = c fixed, so F2(x , y) = F2(x , y , c2)

Assumptions

I F1(x , c1) = arg miny∈Y (x) c1(x , y)

I F2(x , y) = arg minz∈Z(y) c(x , z)



Framework

Optimality

I Let z∗ be the global optimum, and y∗ the corresponding
intermediate solution

I To find global optimum, c1 should be such that y∗ = F1(x , c1)

I Multiple options, for example c1(x , y) = 1{y 6=y∗} and
c1(x , y) = c(x ,F2(x , y)) = minz∈Z(y) c(x , z)

Idea

I Problem: c1 is not well behaved and hard to evaluate

I Therefore, replace c1 by ‘belief’ c̃1
I Update c̃1 based on observation and repeat

I Convergence if c̃1 no longer changes



Framework

Optimality

I Let z∗ be the global optimum, and y∗ the corresponding
intermediate solution

I To find global optimum, c1 should be such that y∗ = F1(x , c1)

I Multiple options, for example c1(x , y) = 1{y 6=y∗} and
c1(x , y) = c(x ,F2(x , y)) = minz∈Z(y) c(x , z)

Idea

I Problem: c1 is not well behaved and hard to evaluate

I Therefore, replace c1 by ‘belief’ c̃1
I Update c̃1 based on observation and repeat

I Convergence if c̃1 no longer changes



Framework

Phase 1

P
h

as
e

2

Z(y)

Z (x)

Y (x)

y

z

Figure: Visualization of domains



Framework

The feedback mechanism

I Update c̃1 such that c̃1(x , ŷ) = c(x , ẑ), where ŷ , ẑ is the
(intermediate) solution from the last iteration

Considerations

I May invalidate previous equalities, but convergence if same
solution is found

I Optionally require that the equality is also satisfied for best
solution so far (the incumbent)

I Important: the a priori belief should be optimistic to avoid
immediate convergence in local optimum



Framework

The feedback mechanism

I Update c̃1 such that c̃1(x , ŷ) = c(x , ẑ), where ŷ , ẑ is the
(intermediate) solution from the last iteration

Considerations

I May invalidate previous equalities, but convergence if same
solution is found

I Optionally require that the equality is also satisfied for best
solution so far (the incumbent)

I Important: the a priori belief should be optimistic to avoid
immediate convergence in local optimum



Framework

Algorithm 1 Simple feedback mechanism.

1: procedure SimpleFeedback(x , F1, F2, c̃1, c)
2: while c̃1 has not converged do

3: ŷ ← F1(x , c̃1);
4: ẑ ← F2(x , ŷ);
5: c̃1 ← Update(c̃1, ŷ , ẑ, c); . Update c̃1(x , ŷ) := c(x , ẑ)

6: end while

7: end procedure



Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion



The pallet matching problem

The problem

I Given a set of request and a set of pallets

I Match the requests in pairs (stacks) of two

I To each request, match one fulfilling pallet

I Costs depend on resulting pairs of pallets



The pallet matching problem

Requests

Pallets

Figure: Visualization of the pallet matching problem



The pallet matching problem

Two phase decomposition

I Phase 1: (non-bipartite) matching of requests
I Phase 2: bipartite matching of requests to pallets

I Note: not a pure bipartite matching problem because of cost
function!



The pallet matching problem

Ingredients

I y : matching of requests

I c1(x , y): represented by cost matrix D

I F1(x , c1): minimum cost perfect matching using cost matrix D

I F2(x , y): matching of pallets to request using MIP

I c̃1: entry d̃k` of D̃ represents lower bound of costs (costs if
ideal pallets are matched)

I Updating mechanism: set d̃k` to actual costs of pallets
matched to requests k and `



The pallet matching problem

Ingredients

I y : matching of requests

I c1(x , y): represented by cost matrix D

I F1(x , c1): minimum cost perfect matching using cost matrix D

I F2(x , y): matching of pallets to request using MIP

I c̃1: entry d̃k` of D̃ represents lower bound of costs (costs if
ideal pallets are matched)

I Updating mechanism: set d̃k` to actual costs of pallets
matched to requests k and `



The pallet matching problem

Ingredients

I y : matching of requests

I c1(x , y): represented by cost matrix D

I F1(x , c1): minimum cost perfect matching using cost matrix D

I F2(x , y): matching of pallets to request using MIP

I c̃1: entry d̃k` of D̃ represents lower bound of costs (costs if
ideal pallets are matched)

I Updating mechanism: set d̃k` to actual costs of pallets
matched to requests k and `



The pallet matching problem

Ingredients

I y : matching of requests

I c1(x , y): represented by cost matrix D

I F1(x , c1): minimum cost perfect matching using cost matrix D

I F2(x , y): matching of pallets to request using MIP

I c̃1: entry d̃k` of D̃ represents lower bound of costs (costs if
ideal pallets are matched)

I Updating mechanism: set d̃k` to actual costs of pallets
matched to requests k and `



The pallet matching problem

Ingredients

I y : matching of requests

I c1(x , y): represented by cost matrix D

I F1(x , c1): minimum cost perfect matching using cost matrix D

I F2(x , y): matching of pallets to request using MIP

I c̃1: entry d̃k` of D̃ represents lower bound of costs (costs if
ideal pallets are matched)

I Updating mechanism: set d̃k` to actual costs of pallets
matched to requests k and `



The pallet matching problem

Ingredients

I y : matching of requests

I c1(x , y): represented by cost matrix D

I F1(x , c1): minimum cost perfect matching using cost matrix D

I F2(x , y): matching of pallets to request using MIP

I c̃1: entry d̃k` of D̃ represents lower bound of costs (costs if
ideal pallets are matched)

I Updating mechanism: set d̃k` to actual costs of pallets
matched to requests k and `



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

∞ 24 ∞ ∞ 0 0 1 0 1 0 0

24 ∞ 6 6 1 0 1 1 0 0 1

∞ 6 ∞ 6 1 1 0 1 1 0 1

∞ 6 6 ∞ 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

Algorithm 2 Simple feedback mechanism.

1: procedure SimpleFeedbackPalletMatching(x)
2: D ← calculateLowerBoundMatrix(x)
3: while true do

4: ŷ ← matchRequests(x ,D);
5: ẑ ← matchPallets(x , ŷ);
6: if c1(ŷ ,D) == c(ẑ) then return

7: end if

8: D ← Update(D, ŷ , ẑ, c); . Update c̃1(x , ŷ) := c(x , ẑ)

9: end while

10: end procedure



The pallet matching problem

Average gap with optimum: 2.88% (4.55% if heuristic used for
second phase)

Figure: Results for 10 randomly generated instances



The pallet matching problem

Figure: Solution quality vs. iterations



Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion



The capacitated vehicle routing problem

The problem

I Given a depot, a set of customers, a demand for each
customer, a vehicle capacity and a distance matrix

I Create routes with customers such that the total demand in
each route does not exceed the capacity

I The total driving time or distance should be minimized



The capacitated vehicle routing problem

9.4

22.0

7.2
10.0 6.3

9.5
12.1

6.1

7.1

15.0

7.1

6.1

10.0

12.0

10.6

9.1

7.2
10.0

5.7

6.4

6.78.5

7.3

15.8

11.410.3

6.4

14.0

12.4

12.0
6.1

9.2

8.6

8.0

8.1

10.0

7.3

6.1

6.7

7.0

13.9

10.0

7.6

8.2

12.0

2.214.8

14.4

9.4

12.1

10.6

8.5

14.3

7.6

7.8

Figure: Visualization of the (capacitated) vehicle routing problem



The capacitated vehicle routing problem

9.4

22.0

7.2
10.0 6.3

9.5
12.1

6.1

7.1

15.0

7.1

6.1

10.0

12.0

10.6

9.1

7.2
10.0

5.7

6.4

6.78.5

7.3

15.8

11.410.3

6.4

14.0

12.4

12.0
6.1

9.2

8.6

8.0

8.1

10.0

7.3

6.1

6.7

7.0

13.9

10.0

7.6

8.2

12.0

2.214.8

14.4

9.4

12.1

10.6

8.5

14.3

7.6

7.8

Figure: Visualization of the (capacitated) vehicle routing problem



The capacitated vehicle routing problem

9.4

22.0

7.2
10.0 6.3

9.5
12.1

6.1

7.1

15.0

7.1

6.1

10.0

12.0

10.6

9.1

7.2
10.0

5.7

6.4

6.78.5

7.3

15.8

11.410.3

6.4

14.0

12.4

12.0
6.1

9.2

8.6

8.0

8.1

10.0

7.3

6.1

6.7

7.0

13.9

10.0

7.6

8.2

12.0

2.214.8

14.4

9.4

12.1

10.6

8.5

14.3

7.6

7.8

Figure: Visualization of the (capacitated) vehicle routing problem



The capacitated vehicle routing problem

Two phase decomposition

I Cluster-first-route-second method according to Bramel and
Simchi-Levi (1995), inspired by Fisher and Jaikumar (1981)

I Phase 1: create clusters using capacitated contractor location
problem (CCLP)

I Phase 2: create routes by solving travelling salesman problem
(TSP) for each cluster



The capacitated vehicle routing problem

Figure: Visualization of the CCLP



The capacitated vehicle routing problem

Figure: Visualization of the CCLP



The capacitated vehicle routing problem

Figure: Visualization of the CCLP



The capacitated vehicle routing problem

Figure: Visualization of the CCLP



The capacitated vehicle routing problem

Variables

I yjj = 1 if j is a seed

I yij = 1 if i is connected to seed j

MIP formulation

min c1(x , y) =
∑

i∈V\{0}

∑
j∈V\{0}

yijdij (1)

s.t.
∑

j∈V\{0}

yij = 1 i ∈ V \ {0} (2)

∑
i∈V\{0}

aiyij ≤ B j ∈ V \ {0} (3)

yij ≤ yjj i , j ∈ V \ {0}, i 6= j (4)

yij ∈ {0, 1} i , j ∈ V \ {0} (5)



The capacitated vehicle routing problem

Ingredients

I y : clustering of customers
I yij = 1 if i is connected to j , yjj = 1 if j is a seed

I c1(x , y): represented by cost matrix D
I dij are the connection costs of location i to seed j
I djj are the setup costs for a seed j

I F1(x , c1): solve the CCLP using the MIP formulation

I F2(x , y): solve the TSP using MIP formulation with lazy
constraint subtour elimination

I c̃1: lower bound is hard, so use ‘optimism parameter’ γ (tij is
distance, 0 is depot)

I dij = γ(t0i + tij − t0j), djj = 2t0j
I Updating mechanism: scale dij (i 6= j) according to observed

route length
I Both for last solution and incumbent; illustration on next slides



The capacitated vehicle routing problem

Ingredients

I y : clustering of customers
I yij = 1 if i is connected to j , yjj = 1 if j is a seed

I c1(x , y): represented by cost matrix D
I dij are the connection costs of location i to seed j
I djj are the setup costs for a seed j

I F1(x , c1): solve the CCLP using the MIP formulation

I F2(x , y): solve the TSP using MIP formulation with lazy
constraint subtour elimination

I c̃1: lower bound is hard, so use ‘optimism parameter’ γ (tij is
distance, 0 is depot)

I dij = γ(t0i + tij − t0j), djj = 2t0j
I Updating mechanism: scale dij (i 6= j) according to observed

route length
I Both for last solution and incumbent; illustration on next slides



The capacitated vehicle routing problem

Ingredients

I y : clustering of customers
I yij = 1 if i is connected to j , yjj = 1 if j is a seed

I c1(x , y): represented by cost matrix D
I dij are the connection costs of location i to seed j
I djj are the setup costs for a seed j

I F1(x , c1): solve the CCLP using the MIP formulation

I F2(x , y): solve the TSP using MIP formulation with lazy
constraint subtour elimination

I c̃1: lower bound is hard, so use ‘optimism parameter’ γ (tij is
distance, 0 is depot)

I dij = γ(t0i + tij − t0j), djj = 2t0j
I Updating mechanism: scale dij (i 6= j) according to observed

route length
I Both for last solution and incumbent; illustration on next slides



The capacitated vehicle routing problem

Ingredients

I y : clustering of customers
I yij = 1 if i is connected to j , yjj = 1 if j is a seed

I c1(x , y): represented by cost matrix D
I dij are the connection costs of location i to seed j
I djj are the setup costs for a seed j

I F1(x , c1): solve the CCLP using the MIP formulation

I F2(x , y): solve the TSP using MIP formulation with lazy
constraint subtour elimination

I c̃1: lower bound is hard, so use ‘optimism parameter’ γ (tij is
distance, 0 is depot)

I dij = γ(t0i + tij − t0j), djj = 2t0j
I Updating mechanism: scale dij (i 6= j) according to observed

route length
I Both for last solution and incumbent; illustration on next slides



The capacitated vehicle routing problem

Ingredients

I y : clustering of customers
I yij = 1 if i is connected to j , yjj = 1 if j is a seed

I c1(x , y): represented by cost matrix D
I dij are the connection costs of location i to seed j
I djj are the setup costs for a seed j

I F1(x , c1): solve the CCLP using the MIP formulation

I F2(x , y): solve the TSP using MIP formulation with lazy
constraint subtour elimination

I c̃1: lower bound is hard, so use ‘optimism parameter’ γ (tij is
distance, 0 is depot)

I dij = γ(t0i + tij − t0j), djj = 2t0j

I Updating mechanism: scale dij (i 6= j) according to observed
route length

I Both for last solution and incumbent; illustration on next slides



The capacitated vehicle routing problem

Ingredients

I y : clustering of customers
I yij = 1 if i is connected to j , yjj = 1 if j is a seed

I c1(x , y): represented by cost matrix D
I dij are the connection costs of location i to seed j
I djj are the setup costs for a seed j

I F1(x , c1): solve the CCLP using the MIP formulation

I F2(x , y): solve the TSP using MIP formulation with lazy
constraint subtour elimination

I c̃1: lower bound is hard, so use ‘optimism parameter’ γ (tij is
distance, 0 is depot)

I dij = γ(t0i + tij − t0j), djj = 2t0j
I Updating mechanism: scale dij (i 6= j) according to observed

route length
I Both for last solution and incumbent; illustration on next slides



The capacitated vehicle routing problem

0

3

7.1
7.1

d33 = 2 · 7.1 = 14.2

γ = 0.8

1

3.2

4.5

d13 = 0.8(3.2 + 4.5− 7.1) = 0.48

2

6.7

2.2

d23 = 0.8(6.7 + 2.2− 7.1) = 1.44

4

5.1

4.0
d43 = 0.8(5.1 + 4.0− 7.1) = 1.60

c̃1(x , ŷ) = 14.2 + 0.48 + 1.44 + 1.60 = 17.72

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

d33 = 2 · 7.1 = 14.2 γ = 0.8

1

3.2

4.5

d13 = 0.8(3.2 + 4.5− 7.1) = 0.48

2

6.7

2.2

d23 = 0.8(6.7 + 2.2− 7.1) = 1.44

4

5.1

4.0
d43 = 0.8(5.1 + 4.0− 7.1) = 1.60

c̃1(x , ŷ) = 14.2 + 0.48 + 1.44 + 1.60 = 17.72

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

d33 = 2 · 7.1 = 14.2 γ = 0.8

1

3.2

4.5

d13 = 0.8(3.2 + 4.5− 7.1) = 0.48

2

6.7

2.2

d23 = 0.8(6.7 + 2.2− 7.1) = 1.44

4

5.1

4.0
d43 = 0.8(5.1 + 4.0− 7.1) = 1.60

c̃1(x , ŷ) = 14.2 + 0.48 + 1.44 + 1.60 = 17.72

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

d33 = 2 · 7.1 = 14.2 γ = 0.8

1

3.2

4.5

d13 = 0.8(3.2 + 4.5− 7.1) = 0.48

2

6.7

2.2

d23 = 0.8(6.7 + 2.2− 7.1) = 1.44

4

5.1

4.0
d43 = 0.8(5.1 + 4.0− 7.1) = 1.60

c̃1(x , ŷ) = 14.2 + 0.48 + 1.44 + 1.60 = 17.72

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

d33 = 2 · 7.1 = 14.2 γ = 0.8

1

3.2

4.5

d13 = 0.8(3.2 + 4.5− 7.1) = 0.48

2

6.7

2.2

d23 = 0.8(6.7 + 2.2− 7.1) = 1.44

4

5.1

4.0
d43 = 0.8(5.1 + 4.0− 7.1) = 1.60

c̃1(x , ŷ) = 14.2 + 0.48 + 1.44 + 1.60 = 17.72

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

d33 = 2 · 7.1 = 14.2 γ = 0.8

1

3.2

4.5

d13 = 0.8(3.2 + 4.5− 7.1) = 0.48

2

6.7

2.2

d23 = 0.8(6.7 + 2.2− 7.1) = 1.44

4

5.1

4.0
d43 = 0.8(5.1 + 4.0− 7.1) = 1.60

c̃1(x , ŷ) = 14.2 + 0.48 + 1.44 + 1.60 = 17.72

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

4

2

1

3

3.2

3.6

2.2

5.1

4.0

c(x , ẑ) = 3.2 + 3.6 + 2.2 + 4.0 + 5.1 = 18.1

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

4

2

1

3

3.2

3.6

2.2

5.1

4.0

c(x , ẑ) = 3.2 + 3.6 + 2.2 + 4.0 + 5.1 = 18.1

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

1

3.2

4.5 2

6.7

2.2

4

5.1

4.0

18.1−14.2
17.72−14.2

= 3.9
3.52
≈ 1.1d33 = 14.2

d13 := 1.1 · 0.48 = 0.53

d23 := 1.1 · 1.44 = 1.60

d43 := 1.1 · 1.60 = 1.77

c̃1(x , ŷ) = 14.2 + 0.53 + 1.60 + 1.77 = 18.10 = c(x , ẑ)

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

1

3.2

4.5 2

6.7

2.2

4

5.1

4.0 18.1−14.2
17.72−14.2

= 3.9
3.52
≈ 1.1

d33 = 14.2

d13 := 1.1 · 0.48 = 0.53

d23 := 1.1 · 1.44 = 1.60

d43 := 1.1 · 1.60 = 1.77

c̃1(x , ŷ) = 14.2 + 0.53 + 1.60 + 1.77 = 18.10 = c(x , ẑ)

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

1

3.2

4.5 2

6.7

2.2

4

5.1

4.0 18.1−14.2
17.72−14.2

= 3.9
3.52
≈ 1.1d33 = 14.2

d13 := 1.1 · 0.48 = 0.53

d23 := 1.1 · 1.44 = 1.60

d43 := 1.1 · 1.60 = 1.77

c̃1(x , ŷ) = 14.2 + 0.53 + 1.60 + 1.77 = 18.10 = c(x , ẑ)

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

1

3.2

4.5 2

6.7

2.2

4

5.1

4.0 18.1−14.2
17.72−14.2

= 3.9
3.52
≈ 1.1d33 = 14.2

d13 := 1.1 · 0.48 = 0.53

d23 := 1.1 · 1.44 = 1.60

d43 := 1.1 · 1.60 = 1.77

c̃1(x , ŷ) = 14.2 + 0.53 + 1.60 + 1.77 = 18.10 = c(x , ẑ)

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

1

3.2

4.5 2

6.7

2.2

4

5.1

4.0 18.1−14.2
17.72−14.2

= 3.9
3.52
≈ 1.1d33 = 14.2

d13 := 1.1 · 0.48 = 0.53

d23 := 1.1 · 1.44 = 1.60

d43 := 1.1 · 1.60 = 1.77

c̃1(x , ŷ) = 14.2 + 0.53 + 1.60 + 1.77 = 18.10 = c(x , ẑ)

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

1

3.2

4.5 2

6.7

2.2

4

5.1

4.0 18.1−14.2
17.72−14.2

= 3.9
3.52
≈ 1.1d33 = 14.2

d13 := 1.1 · 0.48 = 0.53

d23 := 1.1 · 1.44 = 1.60

d43 := 1.1 · 1.60 = 1.77

c̃1(x , ŷ) = 14.2 + 0.53 + 1.60 + 1.77 = 18.10 = c(x , ẑ)

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

1

3.2

4.5 2

6.7

2.2

4

5.1

4.0 18.1−14.2
17.72−14.2

= 3.9
3.52
≈ 1.1d33 = 14.2

d13 := 1.1 · 0.48 = 0.53

d23 := 1.1 · 1.44 = 1.60

d43 := 1.1 · 1.60 = 1.77

c̃1(x , ŷ) = 14.2 + 0.53 + 1.60 + 1.77 = 18.10 = c(x , ẑ)

Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

Convergence

I If γ small, other options are explored

I Unfortunately diverges

I Therefore, keep incumbent as fall back

How to keep incumbent?

I Additionally ensure c̃1(x , y∗) = c(x , z∗)

I If different seeds, updates have no effect

I If same seeds, apply update for locations in intersection of
incumbent and last route

I Apply updates for connecting locations only in one of both to
the intersection route



The capacitated vehicle routing problem

0

2

4

5

1

6

3

4

5

2

Figure: Illustration of the updating mechanism, if the last solution and
incumbent share a seed customer



The capacitated vehicle routing problem

0

2

4

5

1

6

3

4

5

2

Figure: Illustration of the updating mechanism, if the last solution and
incumbent share a seed customer



The capacitated vehicle routing problem

0

2

4

5

1

6

3

4

5

2

Figure: Illustration of the updating mechanism, if the last solution and
incumbent share a seed customer



The capacitated vehicle routing problem

0

2

4

5

1

6

3

4

5

2

Figure: Illustration of the updating mechanism, if the last solution and
incumbent share a seed customer



The capacitated vehicle routing problem

Results for instances from Christofides and Eilon (1969)

Instance Initial solution Incumbent Convergence
Val Gap Val Gap It Time

vrp1-50 539.22 2.78 % 539.22 2.78 % 2 0.4 s
vrp2-75 841.93 0.80 % 841.93 0.80 % 7 137.5 s
vrp3-100 858.54 3.92 % 832.43 0.76 % 8 169.7 s
vrp4-100 832.83 1.62 % 826.90 0.90 % 4 69.2 s
vrp5-120 1052.54 1.00 % 1045.42 0.32 % 7 428.5 s
vrp6-150 1076.66 4.69 % 1053.24 2.41 % 10 878.5 s



The capacitated vehicle routing problem

Figure: Solution quality vs. iterations



Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion



The resource assignment problem

The problem

I Variant of the multiple trip vehicle routing problem (MTVRP)

I Given a depot, a set of customers, capacity constraints, time
windows and driving time constraints

I For a fixed time horizon, create routes for each trailer, where
each trailer can visit the depot multiple times

I Find an assignment of drivers (resources) to the trailers that
satisfies driving time constraints

I Depending on how the trailer routes are constructed, assigning
one driver to each trailer may be suboptimal or even infeasible



The resource assignment problem

Two phase decomposition

I Phase 1: creation of trailer routes using parallel cheapest
insertion

I Phase 2: assignment of resources to trailers using column
generation



The resource assignment problem

Figure: Trailer routes
Figure: Resource assignments



The resource assignment problem

Ingredients

I y : the routes for the trailers

I c1(x , y): non trivial!
I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Figure: Illustration of the topline



The resource assignment problem

Figure: Illustration of the area under the topline at the critical interval



The resource assignment problem

Figure: Illustration of the estimation using the topline



The resource assignment problem

Results

Figure: Initial: 17 trailers, 14
drivers

Figure: Final: 15 trailers, 12
drivers



The resource assignment problem

Instance Initial solution Stopping criteria 10 iterations
Drv (Trl) Drv (Trl) Impr. Found Stop Drv (Trl) Impr. Found

C101 21 (23) 20 (23) 4.76 % 2 8 19 (22) 9.52 % 9
C102 19 (22) 17 (19) 10.53 % 3 4 17 (19) 10.53 % 3
C103 18 (21) 15 (18) 16.67 % 3 5 15 (16) 16.67 % 6
C104 14 (17) 12 (15) 14.29 % 4 6 12 (15) 14.29 % 4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
RC205 21 (21) 18 (20) 14.29 % 3 5 18 (20) 14.29 % 3
RC206 20 (21) 20 (21) 0.00 % 1 2 17 (18) 15.00 % 3
RC207 17 (19) 17 (18) 0.00 % 2 4 17 (18) 0.00 % 2
RC208 15 (16) 15 (16) 0.00 % 1 3 15 (16) 0.00 % 1
Average 4.96 % 2.0 3.7 7.55 % 4.1

Table: Results for the resource assignment problem



Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion



Discussion

Conclusions

I Feedback is very effective!

I Solution quality improves within few iterations

I Efforts needed to achieve convergence depend on difficulty of
problem

I Structured way of exploring alternatives by repetition, not
going into details



Discussion

Conditions

I The structural quality of c̃1
I The quality of F1 and F2
I The effectiveness of the updating mechanism

I The level of optimism in the a priori belief c̃1



Discussion

Further research

I Conditions and proofs for convergence

I Redefine c̃1 to only describe precedence relation on y

I Formally consider multiple objectives

I Hybrid heuristic/exact approach for both phases


	Introduction
	Framework
	The pallet matching problem
	The capacitated vehicle routing problem
	The resource assignment problem
	Discussion

