Optimization of two-phase methods using simple feedback mechanisms

W. Kool

VU University Amsterdam

ORTEC Zoetermeer

Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion

・ロト・西ト・西ト・西ト・日・

Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆臣 ▶ ○臣 ○ のへぐ

Introduction

Two-phase methods

- First phase solves part of the problem
- Second phase solves other part of the problem, given solution from first phase

 Overall solution is at most conditionally optimal given decisions in first phase

Introduction

Two-phase methods

- First phase solves part of the problem
- Second phase solves other part of the problem, given solution from first phase
- Overall solution is at most conditionally optimal given decisions in first phase

Examples

- ► First create clusters/regions/areas, then create routes
- Create timetable/routes, then assign drivers/crews
- More than two phases can be regarded as nested two-phase methods

Idea

- There must be some 'cost metric' c₁ for first phase which, if optimized, results in intermediate solution that leads to global optimum
- ► Start with a priori belief c₁ of c₁ and update c₁ based on observations
- More precisely, let \tilde{c}_1 exactly represent last observed solution

• Stop if \tilde{c}_1 is no longer updated (so fixed point iteration)

Introduction

Instance x, intermediate solution $y = F_1(x, c_1)$, solution $z = F_2(x, y)$ Phase 2 Z(y)Τz Z(x)v Phase 1 Y(x)

Figure: Visualization of domains

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Notation

Instance x, intermediate solution y ∈ Y(x), solution z ∈ Z(y) ⊆ Z(x)

- Cost metric c_1 and $c_2 = c$ for phase 1 and 2
- Optimization methods $F_1(x, c_1)$ and $F_2(x, y, c_2)$
- $c_2 = c$ fixed, so $F_2(x, y) = F_2(x, y, c_2)$

Notation

Instance x, intermediate solution y ∈ Y(x), solution z ∈ Z(y) ⊆ Z(x)

- Cost metric c_1 and $c_2 = c$ for phase 1 and 2
- Optimization methods $F_1(x, c_1)$ and $F_2(x, y, c_2)$
- $c_2 = c$ fixed, so $F_2(x, y) = F_2(x, y, c_2)$

Assumptions

- $F_1(x, c_1) = \arg \min_{y \in Y(x)} c_1(x, y)$
- $F_2(x,y) = \arg\min_{z \in Z(y)} c(x,z)$

Optimality

- Let z* be the global optimum, and y* the corresponding intermediate solution
- ► To find global optimum, c_1 should be such that $y^* = F_1(x, c_1)$

▶ Multiple options, for example $c_1(x, y) = \mathbb{1}_{\{y \neq y^*\}}$ and $c_1(x, y) = c(x, F_2(x, y)) = \min_{z \in Z(y)} c(x, z)$

Optimality

- Let z* be the global optimum, and y* the corresponding intermediate solution
- ► To find global optimum, c_1 should be such that $y^* = F_1(x, c_1)$

▶ Multiple options, for example $c_1(x, y) = \mathbb{1}_{\{y \neq y^*\}}$ and $c_1(x, y) = c(x, F_2(x, y)) = \min_{z \in Z(y)} c(x, z)$

Idea

- Problem: c_1 is not well behaved and hard to evaluate
- Therefore, replace c_1 by 'belief' \tilde{c}_1
- Update \tilde{c}_1 based on observation and repeat
- Convergence if c
 ₁ no longer changes

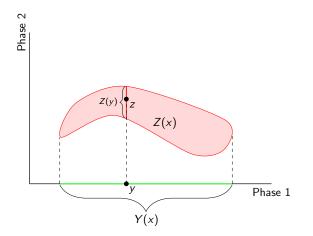


Figure: Visualization of domains

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The feedback mechanism

► Update c
₁ such that c
₁(x, ŷ) = c(x, 2), where ŷ, z
is the (intermediate) solution from the last iteration

(ロ)、(型)、(E)、(E)、 E) の(の)

The feedback mechanism

► Update c
₁ such that c
₁(x, ŷ) = c(x, 2), where ŷ, z
 is the (intermediate) solution from the last iteration

Considerations

- May invalidate previous equalities, but convergence if same solution is found
- Optionally require that the equality is *also* satisfied for best solution so far (the incumbent)
- Important: the a priori belief should be optimistic to avoid immediate convergence in local optimum

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Algorithm 1 Simple feedback mechanism.

- 1: procedure SIMPLEFEEDBACK($x, F_1, F_2, \tilde{c}_1, c$)
- 2: while \tilde{c}_1 has not converged do
- 3: $\hat{y} \leftarrow F_1(x, \tilde{c}_1);$
- 4: $\hat{z} \leftarrow F_2(x, \hat{y});$
- 5: $\tilde{c}_1 \leftarrow \mathsf{Update}(\tilde{c}_1, \hat{y}, \hat{z}, c); \qquad \triangleright \mathsf{Update} \ \tilde{c}_1(x, \hat{y}) := c(x, \hat{z})$

- 6: end while
- 7: end procedure

Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The problem

- Given a set of request and a set of pallets
- Match the requests in pairs (stacks) of two
- To each request, match one fulfilling pallet

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Costs depend on resulting pairs of pallets

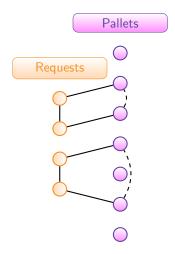


Figure: Visualization of the pallet matching problem

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Two phase decomposition

- Phase 1: (non-bipartite) matching of requests
- Phase 2: bipartite matching of requests to pallets
 - Note: not a pure bipartite matching problem because of cost function!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ingredients

y: matching of requests

Ingredients

- y: matching of requests
- $c_1(x, y)$: represented by cost matrix D

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ingredients

- y: matching of requests
- $c_1(x, y)$: represented by cost matrix D
- $F_1(x, c_1)$: minimum cost perfect matching using cost matrix D

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ingredients

- y: matching of requests
- $c_1(x, y)$: represented by cost matrix D
- $F_1(x, c_1)$: minimum cost perfect matching using cost matrix D

• $F_2(x, y)$: matching of pallets to request using MIP

Ingredients

- y: matching of requests
- $c_1(x, y)$: represented by cost matrix D
- $F_1(x, c_1)$: minimum cost perfect matching using cost matrix D
- $F_2(x, y)$: matching of pallets to request using MIP
- *č*₁: entry *d̃_{kℓ}* of *D̃* represents lower bound of costs (costs if ideal pallets are matched)

Ingredients

- y: matching of requests
- $c_1(x, y)$: represented by cost matrix D
- $F_1(x, c_1)$: minimum cost perfect matching using cost matrix D
- $F_2(x, y)$: matching of pallets to request using MIP
- *č*₁: entry *d̃_{kℓ}* of *D̃* represents lower bound of costs (costs if ideal pallets are matched)

• Updating mechanism: set $\tilde{d}_{k\ell}$ to actual costs of pallets matched to requests k and ℓ

		Req	uests	5		Pallets							
	0	1	0	0	0	0	1	0	1	0	0		
Requests	1	0	1	1	1	0	1	1	0	0	1		
Redu	0	1	0	1	1	1	0	1	1	0	1		
_	0	1	1	0	1	0	1	1	0	0	0		
	0	1	1	1	∞	52	54	6	57	27	56		
	0	0	1	0	52	∞	91	63	57	5	47		
	1	1	0	1	54	91	∞	27	39	84	42		
Pallets	0	1	1	1	6	63	27	∞	69	10	21		
L.	1	0	1	0	57	57	39	69	∞	73	24		
	0	0	0	0	27	5	84	10	73	∞	31		
	l o	1	1	0	56	47	42	21	24	31	∞		

Figure: Calculating the lower bound matrix \tilde{D} for \tilde{c}_1

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQで

		Requ	uests	5		Pallets							
	0	1	0	0	0	0	1	0	1	0	0		
Requests	1	0	1	1	1	0	1	1	0	0	1		
Redu	0	1	0	1	1	1	0	1	1	0	1		
	0	1	1	0	1	0	1	1	0	0	0		
	0	1	1	1	8	52	54	6	57	27	56		
	0	0	1	0	52	∞	91	63	57	5	47		
	1	1	0	1	54	91	∞	27	39	84	42		
Pallets	0	1	1	1	6	63	27	∞	69	10	21		
L.	1	0	1	0	57	57	39	69	∞	73	24		
	0	0	0	0	27	5	84	10	73	∞	31		
	l o	1	1	0	56	47	42	21	24	31	∞		

Figure: Calculating the lower bound matrix \tilde{D} for \tilde{c}_1

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQで

		Requ	Jests	5	Pallets						
	0	1	0	0	0	0	1	0	1	0	0
Requests	1	0	1	1	1	0	1	1	0	0	1
Redu	0	1	0	1	1	1	0	1	1	0	1
_	0	1	1	0	1	0	1	1	0	0	0
	0	1	1	1	8	52	54	6	57	27	56
	0	0	1	0	52	∞	91	63	57	5	47
	1	1	0	1	54	91	∞	27	39	84	42
Pallets	0	1	1	1	6	63	27	∞	69	10	21
	1	0	1	0	57	57	39	69	∞	73	24
	0	0	0	0	27	5	84	10	73	∞	31
	0	1	1	0	56	47	42	21	24	31	∞

Figure: Calculating the lower bound matrix \tilde{D} for \tilde{c}_1

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Requests								Pallets					
	_	_	_	_	_						_		
	0	1	0	0	0	0	1	0	1	0	0		
Requests	1	0	1	1	1	0	1	1	0	0	1		
Redu	0	1	0	1	1	1	0	1	1	0	1		
_	0	1	1	0	1	0	1	1	0	0	0		
	0	1	1	1	8	52	54	6	57	27	56		
	0	0	1	0	52	∞	91	63	57	5	47		
s	1	1	0	1	54	91	∞	27	39	84	42		
Pallets	0	1	1	1	6	63	27	∞	69	10	21		
	1	0	1	0	57	57	39	69	∞	73	24		
	0	0	0	0	27	5	84	10	73	∞	31		
	0	1	1	0	56	47	42	21	24	31	∞		

Figure: Calculating the lower bound matrix \tilde{D} for \tilde{c}_1

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

	I	Req	uests	5		Pallets					
	_		~		_						_
	0	1	0	0	0	0	1	0	1	0	0
Requests	1	0	1	1	1	0	1	1	0	0	1
Redu	0	1	0	1	1	1	0	1	1	0	1
_	0	1	1	0	1	0	1	1	0	0	0
	0	1	1	1	∞	52	54	6	57	27	56
	0	0	1	0	52	∞	91	63	57	5	47
	1	1	0	1	54	91	∞	27	39	84	42
Pallets	0	1	1	1	6	63	27	∞	69	10	21
	1	0	1	0	57	57	39	69	∞	73	24
	0	0	0	0	27	5	84	10	73	∞	31
	0	1	1	0	56	47	42	21	24	31	∞

Figure: Calculating the lower bound matrix \tilde{D} for \tilde{c}_1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

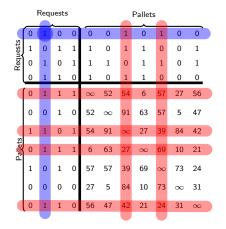


Figure: Calculating the lower bound matrix \tilde{D} for \tilde{c}_1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

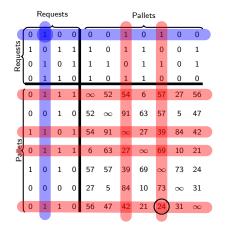


Figure: Calculating the lower bound matrix \tilde{D} for \tilde{c}_1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

		Requ	lests		Pallets								
1	∞	24	∞	∞	0	0	1	0	1	0	0		
Requests	24	∞	6	6	1	0	1	1	0	0	1		
Redu	∞	6	∞	6	1	1	0	1	1	0	1		
	∞	6	6	∞	1	0	1	1	0	0	0		
	0	1	1	1	8	52	54	6	57	27	56		
	0	0	1	0	52	∞	91	63	57	5	47		
10	1	1	0	1	54	91	∞	27	39	84	42		
Pallets	0	1	1	1	6	63	27	∞	69	10	21		
	1	0	1	0	57	57	39	69	∞	73	24		
	0	0	0	0	27	5	84	10	73	∞	31		
	0	1	1	0	56	47	42	21	24	31	∞		

Figure: Calculating the lower bound matrix \tilde{D} for \tilde{c}_1

(ロ)、(国)、(E)、(E)、(E)、(O)へ(C)

Algorithm 2 Simple feedback mechanism.

- 1: **procedure** SIMPLEFEEDBACKPALLETMATCHING(*x*)
- 2: $D \leftarrow calculateLowerBoundMatrix(x)$
- 3: while true do
- 4: $\hat{y} \leftarrow \mathsf{matchRequests}(x, D);$
- 5: $\hat{z} \leftarrow \text{matchPallets}(x, \hat{y});$
- 6: **if** $c_1(\hat{y}, D) == c(\hat{z})$ then return
- 7: end if
- 8: $D \leftarrow \text{Update}(D, \hat{y}, \hat{z}, c); \triangleright \text{Update} \tilde{c}_1(x, \hat{y}) := c(x, \hat{z})$

- 9: end while
- 10: end procedure

Average gap with optimum: 2.88% (4.55% if heuristic used for second phase)

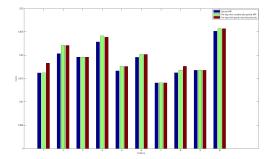


Figure: Results for 10 randomly generated instances

The pallet matching problem

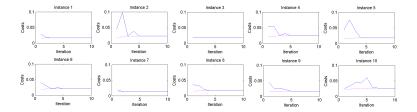


Figure: Solution quality vs. iterations

(日)、

Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion

・ロト・西ト・西ト・西ト・日・

The problem

- Given a depot, a set of customers, a demand for each customer, a vehicle capacity and a distance matrix
- Create routes with customers such that the total demand in each route does not exceed the capacity

The total driving time or distance should be minimized

Figure: Visualization of the (capacitated) vehicle routing problem

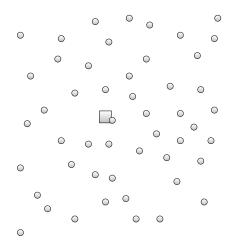


Figure: Visualization of the (capacitated) vehicle routing problem

(日)、

э

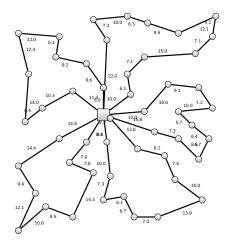


Figure: Visualization of the (capacitated) vehicle routing problem

(日) (同) (日) (日)

э

Two phase decomposition

- Cluster-first-route-second method according to Bramel and Simchi-Levi (1995), inspired by Fisher and Jaikumar (1981)
- Phase 1: create clusters using capacitated contractor location problem (CCLP)
- Phase 2: create routes by solving travelling salesman problem (TSP) for each cluster

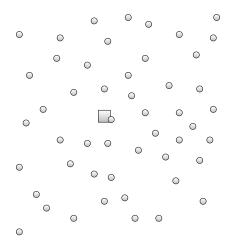


Figure: Visualization of the CCLP

<ロト <回ト < 注ト < 注ト

æ

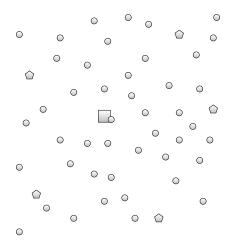


Figure: Visualization of the CCLP

<ロト <回ト < 注ト < 注ト

æ



Figure: Visualization of the CCLP

(日) (同) (日) (日)

э

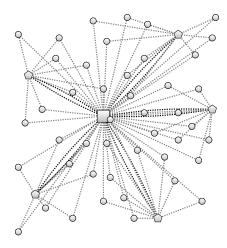


Figure: Visualization of the CCLP

・ロト ・聞ト ・ヨト ・ヨト

э

Variables

- $y_{jj} = 1$ if j is a seed
- $y_{ij} = 1$ if *i* is connected to seed *j*

MIP formulation

min
$$c_1(x,y) = \sum_{i \in V \setminus \{0\}} \sum_{j \in V \setminus \{0\}} y_{ij} d_{ij}$$
 (1)

s.t.
$$\sum_{j \in V \setminus \{0\}} y_{ij} = 1 \qquad i \in V \setminus \{0\}$$
(2)

$$\sum_{i \in V \setminus \{0\}} a_i y_{ij} \le B \qquad \qquad j \in V \setminus \{0\}$$
(3)

 $\begin{array}{ll} y_{ij} \leq y_{jj} & i,j \in V \setminus \{0\}, i \neq j \\ y_{ij} \in \{0,1\} & i,j \in V \setminus \{0\} \end{array} \tag{4} \\ \end{array}$

Ingredients

y: clustering of customers

•
$$y_{ij} = 1$$
 if *i* is connected to *j*, $y_{jj} = 1$ if *j* is a seed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ingredients

- y: clustering of customers
 - $y_{ij} = 1$ if *i* is connected to *j*, $y_{jj} = 1$ if *j* is a seed
- $c_1(x, y)$: represented by cost matrix D
 - *d_{ij}* are the connection costs of location *i* to seed *j*

• d_{jj} are the setup costs for a seed j

Ingredients

- y: clustering of customers
 - $y_{ij} = 1$ if *i* is connected to *j*, $y_{jj} = 1$ if *j* is a seed
- $c_1(x, y)$: represented by cost matrix D
 - d_{ij} are the connection costs of location i to seed j

- d_{jj} are the setup costs for a seed j
- $F_1(x, c_1)$: solve the CCLP using the MIP formulation

Ingredients

- y: clustering of customers
 - $y_{ij} = 1$ if *i* is connected to *j*, $y_{jj} = 1$ if *j* is a seed
- $c_1(x, y)$: represented by cost matrix D
 - *d_{ij}* are the connection costs of location *i* to seed *j*
 - d_{jj} are the setup costs for a seed j
- $F_1(x, c_1)$: solve the CCLP using the MIP formulation
- ► F₂(x, y): solve the TSP using MIP formulation with lazy constraint subtour elimination

Ingredients

- y: clustering of customers
 - $y_{ij} = 1$ if *i* is connected to *j*, $y_{jj} = 1$ if *j* is a seed
- $c_1(x, y)$: represented by cost matrix D
 - d_{ij} are the connection costs of location i to seed j
 - d_{jj} are the setup costs for a seed j
- $F_1(x, c_1)$: solve the CCLP using the MIP formulation
- ► F₂(x, y): solve the TSP using MIP formulation with lazy constraint subtour elimination
- *c*₁: lower bound is hard, so use 'optimism parameter' γ (t_{ij} is distance, 0 is depot)

•
$$d_{ij} = \gamma (t_{0i} + t_{ij} - t_{0j}), \ d_{jj} = 2t_{0j}$$

Ingredients

- y: clustering of customers
 - $y_{ij} = 1$ if *i* is connected to *j*, $y_{jj} = 1$ if *j* is a seed
- $c_1(x, y)$: represented by cost matrix D
 - d_{ij} are the connection costs of location i to seed j
 - d_{jj} are the setup costs for a seed j
- $F_1(x, c_1)$: solve the CCLP using the MIP formulation
- ► F₂(x, y): solve the TSP using MIP formulation with lazy constraint subtour elimination
- *c*₁: lower bound is hard, so use 'optimism parameter' γ (t_{ij} is distance, 0 is depot)

• $d_{ij} = \gamma (t_{0i} + t_{ij} - t_{0j}), \ d_{jj} = 2t_{0j}$

- ▶ Updating mechanism: scale d_{ij} ($i \neq j$) according to observed route length
 - Both for last solution and incumbent; illustration on next slides

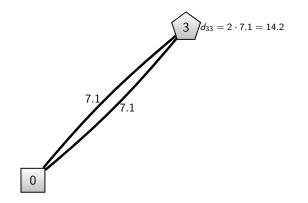


Figure: Illustration of the updating mechanism

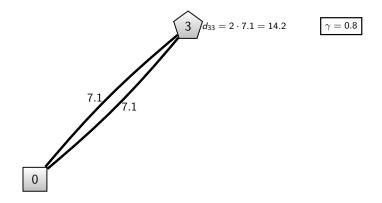


Figure: Illustration of the updating mechanism

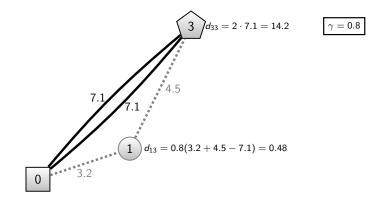


Figure: Illustration of the updating mechanism

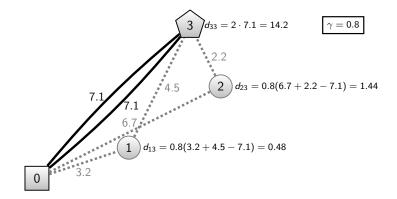


Figure: Illustration of the updating mechanism

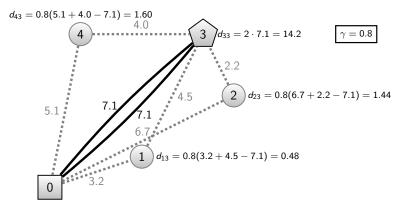


Figure: Illustration of the updating mechanism

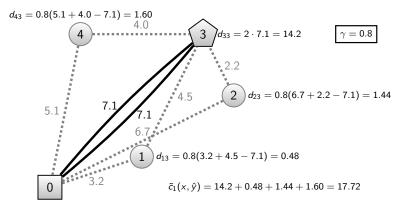


Figure: Illustration of the updating mechanism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

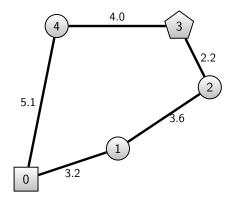


Figure: Illustration of the updating mechanism

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

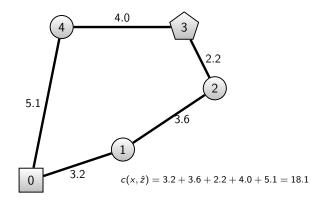


Figure: Illustration of the updating mechanism

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

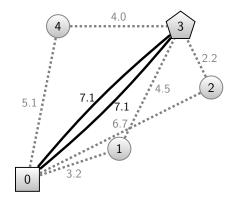
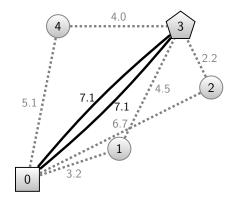


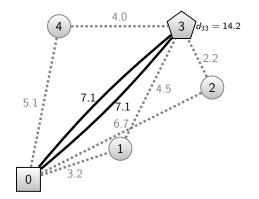
Figure: Illustration of the updating mechanism



 $\frac{18.1 - 14.2}{17.72 - 14.2} = \frac{3.9}{3.52} \approx 1.1$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

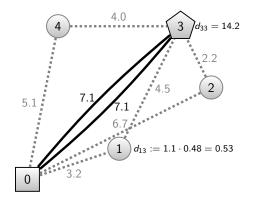
Figure: Illustration of the updating mechanism



 $\frac{18.1 - 14.2}{17.72 - 14.2} = \frac{3.9}{3.52} \approx 1.1$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Figure: Illustration of the updating mechanism



$\frac{18.1-14.2}{17.72-14.2}$	=	$\frac{3.9}{3.52}$	\approx	1.1
--------------------------------	---	--------------------	-----------	-----

Figure: Illustration of the updating mechanism

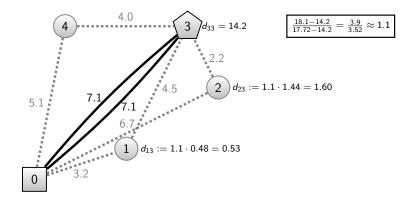


Figure: Illustration of the updating mechanism

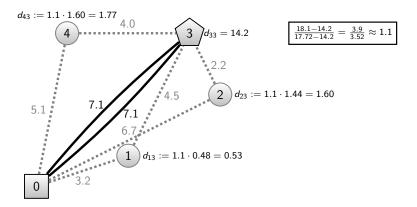


Figure: Illustration of the updating mechanism

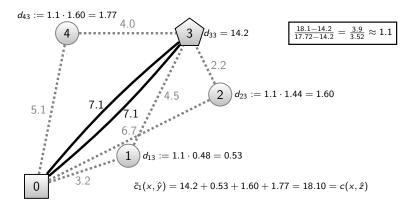


Figure: Illustration of the updating mechanism

Convergence

- If γ small, other options are explored
- Unfortunately diverges
- Therefore, keep incumbent as fall back

How to keep incumbent?

- Additionally ensure $\tilde{c}_1(x, y^*) = c(x, z^*)$
- If different seeds, updates have no effect
- If same seeds, apply update for locations in intersection of incumbent and last route
- Apply updates for connecting locations only in one of both to the intersection route

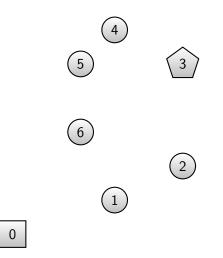


Figure: Illustration of the updating mechanism, if the last solution and incumbent share a seed customer

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

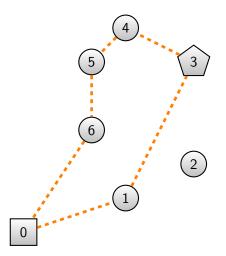


Figure: Illustration of the updating mechanism, if the last solution and incumbent share a seed customer

The capacitated vehicle routing problem

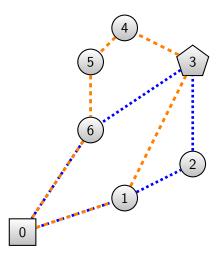


Figure: Illustration of the updating mechanism, if the last solution and incumbent share a seed customer

The capacitated vehicle routing problem

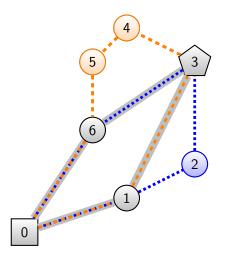


Figure: Illustration of the updating mechanism, if the last solution and incumbent share a seed customer

Results for instances from Christofides and Eilon (1969)

Instance	Initial s	olution	Incum	nbent	Convergence	
	Val	Gap	Val	Gap	lt	Time
vrp1-50	539.22	2.78 %	539.22	2.78 %	2	0.4 s
vrp2-75	841.93	0.80 %	841.93	0.80 %	7	137.5 s
vrp3-100	858.54	3.92 %	832.43	0.76 %	8	169.7 s
vrp4-100	832.83	1.62 %	826.90	0.90 %	4	69.2 s
vrp5-120	1052.54	1.00 %	1045.42	0.32 %	7	428.5 s
vrp6-150	1076.66	4.69 %	1053.24	2.41 %	10	878.5 s

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The capacitated vehicle routing problem

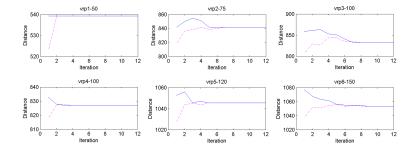


Figure: Solution quality vs. iterations

(日) (同) (日) (日)

ж

Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

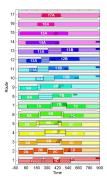
The problem

- Variant of the multiple trip vehicle routing problem (MTVRP)
- Given a depot, a set of customers, capacity constraints, time windows and driving time constraints
- For a fixed time horizon, create routes for each trailer, where each trailer can visit the depot multiple times
- Find an assignment of drivers (resources) to the trailers that satisfies driving time constraints
- Depending on how the trailer routes are constructed, assigning one driver to each trailer may be suboptimal or even infeasible

Two phase decomposition

- Phase 1: creation of trailer routes using parallel cheapest insertion
- Phase 2: assignment of resources to trailers using column generation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



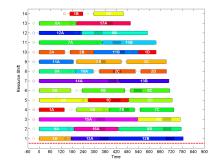


Figure: Trailer routes

Figure: Resource assignments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Ingredients

> y: the routes for the trailers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ingredients

- y: the routes for the trailers
- $c_1(x, y)$: non trivial!
 - Estimate 'topline' using a lower bound and a bias
 - Estimate no. drivers from topline height in critical interval

Ingredients

- y: the routes for the trailers
- $c_1(x, y)$: non trivial!
 - Estimate 'topline' using a lower bound and a bias
 - Estimate no. drivers from topline height in critical interval
- $F_1(x, c_1)$: trailer routes using parallel cheapest insertion
 - Adapt insertion cost to find result with low topline
 - Repeat for a number of different weights, with last solution bias and incumbent bias

Ingredients

- y: the routes for the trailers
- $c_1(x, y)$: non trivial!
 - Estimate 'topline' using a lower bound and a bias
 - Estimate no. drivers from topline height in critical interval
- $F_1(x, c_1)$: trailer routes using parallel cheapest insertion
 - Adapt insertion cost to find result with low topline
 - Repeat for a number of different weights, with last solution bias and incumbent bias

► F₂(x, y): assign the resources to trailers using column generation

Ingredients

- y: the routes for the trailers
- $c_1(x, y)$: non trivial!
 - Estimate 'topline' using a lower bound and a bias
 - Estimate no. drivers from topline height in critical interval
- $F_1(x, c_1)$: trailer routes using parallel cheapest insertion
 - Adapt insertion cost to find result with low topline
 - Repeat for a number of different weights, with last solution bias and incumbent bias
- ► F₂(x, y): assign the resources to trailers using column generation
- ► č₁: a priori we have no bias and use the default criterium without feedback

Ingredients

- y: the routes for the trailers
- $c_1(x, y)$: non trivial!
 - Estimate 'topline' using a lower bound and a bias
 - Estimate no. drivers from topline height in critical interval
- $F_1(x, c_1)$: trailer routes using parallel cheapest insertion
 - Adapt insertion cost to find result with low topline
 - Repeat for a number of different weights, with last solution bias and incumbent bias
- ► F₂(x, y): assign the resources to trailers using column generation
- ► č₁: a priori we have no bias and use the default criterium without feedback
- Updating mechanism: take bias from observed topline

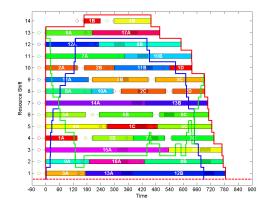


Figure: Illustration of the topline

(日)、

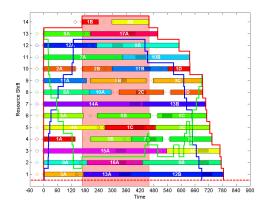


Figure: Illustration of the area under the topline at the critical interval

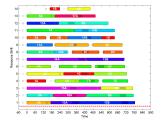
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙



Figure: Illustration of the estimation using the topline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Results



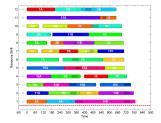


Figure: Initial: 17 trailers, 14 drivers

Figure: Final: 15 trailers, 12 drivers

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Instance	Initial solution	Stopping criteria				10 iterations		
	Drv (Trl)	Drv (Trl)	Impr.	Found	Stop	Drv (Trl)	Impr.	Found
C101	21 (23)	20 (23)	4.76 %	2	8	19 (22)	9.52 %	9
C102	19 (22)	17 (19)	10.53 %	3	4	17 (19)	10.53 %	3
C103	18 (21)	15 (18)	16.67 %	3	5	15 (16)	16.67 %	6
C104	14 (17)	12 (15)	14.29 %	4	6	12 (15)	14.29 %	4
:		:			:	:	:	:
RC205	21 (21)	18 (20)	14.29 %	3	5	18 (20)	14.29 %	3
RC206	20 (21)	20 (21)	0.00 %	1	2	17 (18)	15.00 %	3
RC207	17 (19)	17 (18)	0.00 %	2	4	17 (18)	0.00 %	2
RC208	15 (16)	15 (16)	0.00 %	1	3	15 (16)	0.00 %	1
Average			4.96 %	2.0	3.7		7.55 %	4.1

Table: Results for the resource assignment problem

Agenda

Introduction

Framework

The pallet matching problem

The capacitated vehicle routing problem

The resource assignment problem

Discussion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusions

- Feedback is very effective!
- Solution quality improves within few iterations
- Efforts needed to achieve convergence depend on difficulty of problem

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 Structured way of exploring alternatives by repetition, not going into details

Conditions

- The structural quality of \tilde{c}_1
- The quality of F₁ and F₂
- The effectiveness of the updating mechanism
- The level of optimism in the a priori belief c₁

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Further research

- Conditions and proofs for convergence
- Redefine \tilde{c}_1 to only describe *precedence relation* on *y*

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Formally consider multiple objectives
- Hybrid heuristic/exact approach for both phases