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Introduction

Two-phase methods

I First phase solves part of the problem

I Second phase solves other part of the problem, given solution
from first phase

I Overall solution is at most conditionally optimal given
decisions in first phase

Examples

I First create clusters/regions/areas, then create routes

I Create timetable/routes, then assign drivers/crews

I More than two phases can be regarded as nested two-phase
methods
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Introduction

Idea

I There must be some ‘cost metric’ c1 for first phase which, if
optimized, results in intermediate solution that leads to global
optimum

I Start with a priori belief c̃1 of c1 and update c̃1 based on
observations

I More precisely, let c̃1 exactly represent last observed solution

I Stop if c̃1 is no longer updated (so fixed point iteration)
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Instance x , intermediate solution y = F1(x , c1), solution
z = F2(x , y)
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Framework

Notation

I Instance x , intermediate solution y ∈ Y (x), solution
z ∈ Z (y) ⊆ Z (x)

I Cost metric c1 and c2 = c for phase 1 and 2

I Optimization methods F1(x , c1) and F2(x , y , c2)

I c2 = c fixed, so F2(x , y) = F2(x , y , c2)

Assumptions

I F1(x , c1) = arg miny∈Y (x) c1(x , y)

I F2(x , y) = arg minz∈Z(y) c(x , z)
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Framework

Optimality

I Let z∗ be the global optimum, and y∗ the corresponding
intermediate solution

I To find global optimum, c1 should be such that y∗ = F1(x , c1)

I Multiple options, for example c1(x , y) = 1{y 6=y∗} and
c1(x , y) = c(x ,F2(x , y)) = minz∈Z(y) c(x , z)

Idea

I Problem: c1 is not well behaved and hard to evaluate

I Therefore, replace c1 by ‘belief’ c̃1
I Update c̃1 based on observation and repeat

I Convergence if c̃1 no longer changes
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Framework

The feedback mechanism

I Update c̃1 such that c̃1(x , ŷ) = c(x , ẑ), where ŷ , ẑ is the
(intermediate) solution from the last iteration

Considerations

I May invalidate previous equalities, but convergence if same
solution is found

I Optionally require that the equality is also satisfied for best
solution so far (the incumbent)

I Important: the a priori belief should be optimistic to avoid
immediate convergence in local optimum
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Framework

Algorithm 1 Simple feedback mechanism.

1: procedure SimpleFeedback(x , F1, F2, c̃1, c)
2: while c̃1 has not converged do

3: ŷ ← F1(x , c̃1);
4: ẑ ← F2(x , ŷ);
5: c̃1 ← Update(c̃1, ŷ , ẑ, c); . Update c̃1(x , ŷ) := c(x , ẑ)

6: end while

7: end procedure
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The pallet matching problem

The problem

I Given a set of request and a set of pallets

I Match the requests in pairs (stacks) of two

I To each request, match one fulfilling pallet

I Costs depend on resulting pairs of pallets



The pallet matching problem

Requests
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Figure: Visualization of the pallet matching problem



The pallet matching problem

Two phase decomposition

I Phase 1: (non-bipartite) matching of requests
I Phase 2: bipartite matching of requests to pallets

I Note: not a pure bipartite matching problem because of cost
function!



The pallet matching problem

Ingredients

I y : matching of requests

I c1(x , y): represented by cost matrix D

I F1(x , c1): minimum cost perfect matching using cost matrix D

I F2(x , y): matching of pallets to request using MIP

I c̃1: entry d̃k` of D̃ represents lower bound of costs (costs if
ideal pallets are matched)

I Updating mechanism: set d̃k` to actual costs of pallets
matched to requests k and `
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The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem

0 1 0 0 0 0 1 0 1 0 0

1 0 1 1 1 0 1 1 0 0 1

0 1 0 1 1 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 0 0

0 1 1 1 ∞ 52 54 6 57 27 56

0 0 1 0 52 ∞ 91 63 57 5 47

1 1 0 1 54 91 ∞ 27 39 84 42

0 1 1 1 6 63 27 ∞ 69 10 21

1 0 1 0 57 57 39 69 ∞ 73 24

0 0 0 0 27 5 84 10 73 ∞ 31

0 1 1 0 56 47 42 21 24 31 ∞

Requests Pallets

R
eq

u
es
ts

P
a
ll
et
s

Figure: Calculating the lower bound matrix D̃ for c̃1



The pallet matching problem
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The pallet matching problem

Algorithm 2 Simple feedback mechanism.

1: procedure SimpleFeedbackPalletMatching(x)
2: D ← calculateLowerBoundMatrix(x)
3: while true do

4: ŷ ← matchRequests(x ,D);
5: ẑ ← matchPallets(x , ŷ);
6: if c1(ŷ ,D) == c(ẑ) then return

7: end if

8: D ← Update(D, ŷ , ẑ, c); . Update c̃1(x , ŷ) := c(x , ẑ)

9: end while

10: end procedure



The pallet matching problem

Average gap with optimum: 2.88% (4.55% if heuristic used for
second phase)

Figure: Results for 10 randomly generated instances



The pallet matching problem
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The capacitated vehicle routing problem

The problem

I Given a depot, a set of customers, a demand for each
customer, a vehicle capacity and a distance matrix

I Create routes with customers such that the total demand in
each route does not exceed the capacity

I The total driving time or distance should be minimized
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The capacitated vehicle routing problem

Two phase decomposition

I Cluster-first-route-second method according to Bramel and
Simchi-Levi (1995), inspired by Fisher and Jaikumar (1981)

I Phase 1: create clusters using capacitated contractor location
problem (CCLP)

I Phase 2: create routes by solving travelling salesman problem
(TSP) for each cluster
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Figure: Visualization of the CCLP
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The capacitated vehicle routing problem

Variables

I yjj = 1 if j is a seed

I yij = 1 if i is connected to seed j

MIP formulation

min c1(x , y) =
∑

i∈V\{0}

∑
j∈V\{0}

yijdij (1)

s.t.
∑

j∈V\{0}

yij = 1 i ∈ V \ {0} (2)

∑
i∈V\{0}

aiyij ≤ B j ∈ V \ {0} (3)

yij ≤ yjj i , j ∈ V \ {0}, i 6= j (4)

yij ∈ {0, 1} i , j ∈ V \ {0} (5)



The capacitated vehicle routing problem

Ingredients

I y : clustering of customers
I yij = 1 if i is connected to j , yjj = 1 if j is a seed

I c1(x , y): represented by cost matrix D
I dij are the connection costs of location i to seed j
I djj are the setup costs for a seed j

I F1(x , c1): solve the CCLP using the MIP formulation

I F2(x , y): solve the TSP using MIP formulation with lazy
constraint subtour elimination

I c̃1: lower bound is hard, so use ‘optimism parameter’ γ (tij is
distance, 0 is depot)

I dij = γ(t0i + tij − t0j), djj = 2t0j
I Updating mechanism: scale dij (i 6= j) according to observed

route length
I Both for last solution and incumbent; illustration on next slides
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Figure: Illustration of the updating mechanism



The capacitated vehicle routing problem

0

3

7.1
7.1

1

3.2

4.5 2

6.7

2.2

4

5.1

4.0 18.1−14.2
17.72−14.2

= 3.9
3.52
≈ 1.1d33 = 14.2

d13 := 1.1 · 0.48 = 0.53

d23 := 1.1 · 1.44 = 1.60

d43 := 1.1 · 1.60 = 1.77
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c̃1(x , ŷ) = 14.2 + 0.53 + 1.60 + 1.77 = 18.10 = c(x , ẑ)
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Convergence

I If γ small, other options are explored

I Unfortunately diverges

I Therefore, keep incumbent as fall back

How to keep incumbent?

I Additionally ensure c̃1(x , y∗) = c(x , z∗)

I If different seeds, updates have no effect

I If same seeds, apply update for locations in intersection of
incumbent and last route

I Apply updates for connecting locations only in one of both to
the intersection route
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Results for instances from Christofides and Eilon (1969)

Instance Initial solution Incumbent Convergence
Val Gap Val Gap It Time

vrp1-50 539.22 2.78 % 539.22 2.78 % 2 0.4 s
vrp2-75 841.93 0.80 % 841.93 0.80 % 7 137.5 s
vrp3-100 858.54 3.92 % 832.43 0.76 % 8 169.7 s
vrp4-100 832.83 1.62 % 826.90 0.90 % 4 69.2 s
vrp5-120 1052.54 1.00 % 1045.42 0.32 % 7 428.5 s
vrp6-150 1076.66 4.69 % 1053.24 2.41 % 10 878.5 s
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Figure: Solution quality vs. iterations
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The resource assignment problem

The problem

I Variant of the multiple trip vehicle routing problem (MTVRP)

I Given a depot, a set of customers, capacity constraints, time
windows and driving time constraints

I For a fixed time horizon, create routes for each trailer, where
each trailer can visit the depot multiple times

I Find an assignment of drivers (resources) to the trailers that
satisfies driving time constraints

I Depending on how the trailer routes are constructed, assigning
one driver to each trailer may be suboptimal or even infeasible



The resource assignment problem

Two phase decomposition

I Phase 1: creation of trailer routes using parallel cheapest
insertion

I Phase 2: assignment of resources to trailers using column
generation



The resource assignment problem

Figure: Trailer routes
Figure: Resource assignments



The resource assignment problem

Ingredients

I y : the routes for the trailers

I c1(x , y): non trivial!
I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Ingredients

I y : the routes for the trailers
I c1(x , y): non trivial!

I Estimate ‘topline’ using a lower bound and a bias
I Estimate no. drivers from topline height in critical interval

I F1(x , c1): trailer routes using parallel cheapest insertion
I Adapt insertion cost to find result with low topline
I Repeat for a number of different weights, with last solution

bias and incumbent bias

I F2(x , y): assign the resources to trailers using column
generation

I c̃1: a priori we have no bias and use the default criterium
without feedback

I Updating mechanism: take bias from observed topline



The resource assignment problem

Figure: Illustration of the topline
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Figure: Illustration of the area under the topline at the critical interval
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Figure: Illustration of the estimation using the topline
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Results

Figure: Initial: 17 trailers, 14
drivers

Figure: Final: 15 trailers, 12
drivers



The resource assignment problem

Instance Initial solution Stopping criteria 10 iterations
Drv (Trl) Drv (Trl) Impr. Found Stop Drv (Trl) Impr. Found

C101 21 (23) 20 (23) 4.76 % 2 8 19 (22) 9.52 % 9
C102 19 (22) 17 (19) 10.53 % 3 4 17 (19) 10.53 % 3
C103 18 (21) 15 (18) 16.67 % 3 5 15 (16) 16.67 % 6
C104 14 (17) 12 (15) 14.29 % 4 6 12 (15) 14.29 % 4
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RC205 21 (21) 18 (20) 14.29 % 3 5 18 (20) 14.29 % 3
RC206 20 (21) 20 (21) 0.00 % 1 2 17 (18) 15.00 % 3
RC207 17 (19) 17 (18) 0.00 % 2 4 17 (18) 0.00 % 2
RC208 15 (16) 15 (16) 0.00 % 1 3 15 (16) 0.00 % 1
Average 4.96 % 2.0 3.7 7.55 % 4.1

Table: Results for the resource assignment problem
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Discussion

Conclusions

I Feedback is very effective!

I Solution quality improves within few iterations

I Efforts needed to achieve convergence depend on difficulty of
problem

I Structured way of exploring alternatives by repetition, not
going into details



Discussion

Conditions

I The structural quality of c̃1
I The quality of F1 and F2
I The effectiveness of the updating mechanism

I The level of optimism in the a priori belief c̃1



Discussion

Further research

I Conditions and proofs for convergence

I Redefine c̃1 to only describe precedence relation on y

I Formally consider multiple objectives

I Hybrid heuristic/exact approach for both phases
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