
Master’s Thesis Econometrics & Operations Research

Optimization of two-phase methods using simple feedback

mechanisms

Wouter Kool

1937189

VU Supervisor: Prof. Dr. J. Gromicho

VU Co-Reader: Prof. Dr. L. Stougie

ORTEC Supervisor: Dr. Ir. G. Post

VU University, Amsterdam

Faculty of Economics and Business Administration

Master Econometrics & Operations Research

De Boelelaan 1105

1081 HV Amsterdam

ORTEC

Houtsingel 5

2719 EA Zoetermeer

December 2014

Abstract

In this thesis, we present a new framework for the optimization of two-phase methods using

a simple feedback mechanism. The framework is based on the idea that there must exist a

cost metric for the first phase, such that optimization of the first phase according to that cost

metric will result in an intermediate solution, which leads to the optimal solution if it is used

as input for the second phase. We present ideas for defining an a priori belief for this cost

metric and we present an updating mechanism that can be used to update the belief according to

observations. This process is repeated, until the belief is no longer updated, such that the method

can be regarded as a special form of a fixed point iteration. We apply the framework to three

different problems: the pallet matching problem, the capacitated vehicle routing problem, and the

resource assignment problem. We observe that using the framework we are able to significantly

improve on the initial solution quality within just a few iterations, but the applicability of the

framework becomes increasingly more challenging from a modelling point of view alongside with

the modelling complexity of the problem being solved.

i

Contents

1 Introduction 1

2 Theoretical framework 3

2.1 Notation . 3

2.2 Optimality of the solution . 3

2.3 The feedback mechanism . 5

2.4 Optimistic a priori belief . 5

2.5 The algorithm . 6

3 The pallet matching problem 7

3.1 The problem . 7

3.2 Mathematical problem formulation . 8

3.3 Decomposition of the problem . 10

3.4 Filling in the ingredients . 10

3.5 Simple feedback mechanism for the pallet matching problem 12

3.6 Variant: a heuristic approach for the second subproblem 13

3.7 Experiments . 15

4 The capacitated vehicle routing problem 19

4.1 The problem . 19

4.2 Mathematical problem formulation . 20

4.3 Decomposition of the problem . 21

4.4 Filling in the ingredients . 22

4.5 Simple feedback mechanism for the CVRP . 32

4.6 Variant: a heuristic approach for the second subproblem 32

4.7 Experiments . 34

5 The resource assignment problem 37

5.1 The problem . 37

5.2 Decomposition of the problem . 37

5.3 Filling in the ingredients . 38

5.4 Simple feedback mechanism for the resource assignment problem 45

5.5 Experiments . 46

6 Discussion 50

6.1 Conditions for the simple feedback mechanism 50

6.2 Further research . 51

A Results CVRP 53

References 56

ii

1 INTRODUCTION 1

1 Introduction

Optimization problems are often solved using multi-phase methods in practice, because optimiza-

tion of the entire problem is computationally intractable. An example is the airline scheduling

problem, where phases may consist of timetabling, fleet-assignment and crew-pairing. Typically

these multi-phase methods are somewhat intuitive with respect to the problem and therefore

align with the operational processes. In other cases, phases are less natural, but introduced to

break a problem down into simpler subproblems. An example is the vehicle routing problem

(VRP), for which many solution methods divide the problem in a clustering problem and a

collection of independent (single vehicle) routing problems.

What characterizes a multi-phase approach is that each consecutive phase is optimized given

the results of the preceding phase(s) and with respect to some cost metric defined for that

phase. This means that, depending on the method used to solve the problem in each phase, the

decisions made in each phase are at most conditionally optimal given the preceding phases. Since

the objective is to optimize the overall problem, the decisions made in each phase should ideally

correspond to the decisions required to find the global optimum. For each suboptimal decision

in each of the phases, we may loose a part of the global optimality of the problem. Therefore,

the cost metric in each phase should be such that good solutions with respect to that cost metric

are also part of good solutions for the global problem.

In many applications, each phase is executed just once, which means that there is no feedback

from subsequent phases. This makes the overall approach effectively a greedy heuristic with

respect to the phases. There are a number of techniques in which the problems for each phase

are solved repeatedly to find an overall solution, such as Column Generation (Barnhart et al.,

1998) and Lagrange decomposition (Bellman, 1956). Using these techniques, subproblems are

optimized with additional information in the form of shadow prices or Lagrange multipliers.

These methods have proven to be very powerful, but their application is limited to special

classes of problems. More generally applicable are metaheuristics such as Genetic Algorithms

(Davis et al., 1991), Simulated Annealing (Van Laarhoven and Aarts, 1987) and Tabu Search

(Glover and Laguna, 1999). All of these metaheurstics somehow ‘learn’ from earlier decisions in

the sense that they generate new solutions based on what has been observed before. However,

these methods do not explicitly take into account problems consisting of multiple phases.

In this thesis, we will introduce a general concept for a simple feedback mechanism for opti-

mization of a two-phase method. The idea is that in each iteration the cost metric for the first

1 INTRODUCTION 2

phase is updated in such a way that it converges to the ‘true’ cost metric for the overall problem.

The mechanism is stopped if the cost metric no longer changes, which is why the method can be

regarded as a special form of fixed point iteration (Hyvarinen, 1999). Using the true cost metric

for the first phase means that solving the first phase optimally and the second phase conditionally

optimal results in the optimal overall solution. We will illustrate how this is implemented for

three different problems: the pallet matching problem, which is a variant of a three dimensional

matching problem, the famous capacitated vehicle routing problem and the resource assignment

problem.

The remainder of this thesis is structured as follows. In Section 2 we will develop the theoret-

ical framework that we use to implement our iterative feedback mechanism. In Section 3 we will

apply it to the pallet matching problem, in Section 4 we do the same for the capacitated vehicle

routing problem and in Section 5 we apply the framework to the resource assignment problem.

The thesis concludes with a discussion in Section 6.

2 THEORETICAL FRAMEWORK 3

2 Theoretical framework

In this section, we develop the theoretical framework which we use to optimize in general a

multi-phase approach. We focus on two-phase methods only using the observation that any

multiple-phase method can be regarded as multiple nested two-phase methods.

2.1 Notation

Let x be an instance of the problem. Let F1(x, c1) be the method that executes phase 1 of the

optimization problem using the cost metric c1. Let y = F1(x, c1) be the intermediate result

after phase 1, so F1(x, c1) = arg miny∈Y (x) c1(x, y). Y (x) is the set of all possible intermediate

solutions for input x and the metric c1 is defined as a function of x and y giving the costs for

intermediate solution y for instance x. For phase 2, we have z = F2(x, y), where z is the result

of phase 2. Also, we have a cost metric c2 for phase 2, which typically matches the overall cost

metric c and which we assume is known. In other words, we assume that for any global solution

z in the domain Z(x), we are able to calculate c2(x, z) = c(x, z) as the ‘cost’ of the solution.

Again, F2 can be written as F2(x, y, c2) = arg minz∈Z(y) c2(x, z), where Z(y) is the set of feasible

solutions which have y as intermediate solution, and we write F2(x, y) = F2(x, y, c2) because we

assume c2 is known and fixed. Let Z(x) be the set of all feasible solutions for the instance x. It is

clear that Z(y) ⊆ Z(x). We assume that for every solution z there is a exactly one intermediate

solution y, which can be observed as the projection of Z(y) on the domain Y (x). As a result it

holds that Z(y) ∩ Z(y′) = ∅ ∀y, y′ ∈ Y (x), y 6= y′ and that Z(x) =
⋃
y∈Y (x) Z(y). See Figure 1

for an illustration.

2.2 Optimality of the solution

We assume that there is a unique optimal solution z∗ for the problem and we define F (x) to

be the utopian method that gives this optimal solution z∗ for any instance x, so z∗ = F (x) =

arg minz∈Z(x) c(x, z). In order to find z∗ using the two phase approach we need that z∗ ∈ Z(y)

for y = F1(x, c1). Since for every z there is only one y such that z ∈ Z(y), there is a unique

optimal intermediate solution which we denote with y∗. This means that we need to find a cost

metric c1 such that y∗ = F1(x, c1). If this is the case, we will say that c1 represents the optimum.

Definition 1. A cost metric c1 represents the optimum if y∗ = F1(x, c1).

2 THEORETICAL FRAMEWORK 4

Phase 1

P
h

a
se

2
Z(y)

Z(x)

Y (x)

y

z

Figure 1: Visualization of domains

If we do not require any special structure of c1, we can show that there always exists a cost

metric that satisfies this property.

Proposition 1. A cost metric c1 represents the optimum iff c1(x, y) > c1(x, y∗) ∀y ∈ Y (x) \

{y∗}.

Proof. If c1 represents the optimum, it must hold that y∗ = F1(x, c1) = arg miny∈Y (x) c1(x, y),

so it must hold that c1(x, y) > c1(x, y∗) ∀y ∈ Y (x) \ {y∗}. On the other hand, if it holds that

c1(x, y) > c1(x, y∗) ∀y ∈ Y (x) \ {y∗} than y∗ is the optimum according to c1, so c1 represents

the optimum.

Using Proposition 1, it is trivial to show that the function c1(x, y) = 1{y 6=y∗} represents the

optimum. Unfortunately, the problem of finding this metric is equivalent to the problem itself.

Proposition 2. A sufficient condition for c1 to represent the optimum y∗, z∗ is that c1(x, y) >

c1(x, y′) if c(x, F2(x, y)) > c(x, F2(x, y′)) ∀y, y′ ∈ Y (x).

Proof. Let y′ = y∗ and y ∈ Y (x) \ {y∗}. Since z∗ = F2(x, y∗) is the unique optimum,

c(x, F2(x, y)) > c(x, F2(x, y∗)) ∀y ∈ Y (x) \ {y∗}. If we ensure that c1(x, y) > c1(x, y′) if

c(x, F2(x, y)) > c(x, F2(x, y′)) ∀y, y′ ∈ Y (x), then from this it follows that c1(x, y) > c1(x, y∗)

for y ∈ Y (x) \ {y∗}. Since this holds ∀y ∈ Y (x) \ {y∗}, it follows from Proposition 1 that c1

represents the optimum.

2 THEORETICAL FRAMEWORK 5

Proposition 3. A stronger sufficient condition for c1 to represent the optimum y∗, z∗ is that

c1(x, y) = c(x, F2(x, y)) ∀y ∈ Y (x).

Proof. If c1(x, y) = c(x, F2(x, y)) ∀y ∈ Y (x) then c(x, F2(x, y)) > c(x, F2(x, y′)) ⇔ c1(x, y) >

c1(x, y′) ∀y, y′ ∈ Y (x), such that c1 represents the optimum according to Proposition 2.

From Proposition 3 it follows that c1 represents the optimum if c1(x, y) = c(x, F2(x, y)). This

means that c1 gives for each y the actual cost for the optimal z that follows from this y. This

leads to the aforementioned similarity with fixed point iteration.

2.3 The feedback mechanism

The feedback mechanism that we introduce is based on the observation that using the metric

c∗1(x, y) = c(x, F2(x, y)) for the first phase will result in the optimal solution being found (Propo-

sition 3). We start with an a priori belief c̃1 of c∗1 and we iteratively update this belief based on

observations, with as goal to let c̃1 converge to c∗1. More precisely, if an intermediate solution ŷ

results in a solution ẑ, we update c̃1 such that c̃1(x, ŷ) = c(x, ẑ). Important is that we repeat

this procedure until it is no longer needed to update c̃1, so when c(x, ẑ) = c̃1(x, ŷ). In that case,

we do not update c̃1 and it is easy to see that the next iterations will result in the same solution,

in which case we say that c̃1 has converged. This means that we can immediately stop and we

converge in the same sense as in fixed point methods.

Definition 2. c̃1 has converged if as a result of the feedback mechanism c̃1 has been updated such

that it holds that c̃1(x, ŷ) = c(x, F2(x, ŷ)) for ŷ = F1(x, c̃1).

Note that the update in each next iteration may invalidate the equality c̃1(x, ŷ) = c(x, ẑ) for

the previous iteration. However, depending on the structural properties of c1, there may be some

freedom in the way c1 is updated, such that additional conditions can be set as constraints for

the update. We have observed that in this sense it helps to require that c̃1 not only represents

the true costs for the last observation, but also for the best observation so far (the incumbent).

This will become clear in the example in Section 4.

2.4 Optimistic a priori belief

Letting c̃1 represent the incumbent solution at any time helps the converge of c̃1. However, in

order to avoid premature convergence to a local optimum, there is another condition that should

be met: the a priori belief c̃1 should be optimistic towards ‘better’ intermediate solutions y.

2 THEORETICAL FRAMEWORK 6

Definition 3. A cost metric c1 is optimistic towards an intermediate solution y if c1(x, y) ≤

c(x, F2(x, y)).

This is because if it is too conservative (pessimistic), the method becomes a ‘self fulfilling

prophecy’. To see this, observe that in the first iteration, the intermediate solution ŷ that

optimizes c̃1 is found. If the metric is pessimistic, then it will hold that actual value c(x, F2(x, ŷ))

is lower than c̃1(x, ŷ). As a result, c̃1 gets updated (decreased) such that ŷ is positively reinforced,

despite it already being optimal. For other solutions y the value of c̃1 may also decrease (if they

are similar to ŷ), but probably not as much as for y = ŷ, so typically in the next iteration the same

y is found. This means that the method immediately terminates with a solution ẑ = F2(x, ŷ), of

which the quality depends on the quality of the a priori belief c̃1. If, on the contrary, c̃1 is taken

to be optimistic, then for any y the reinforcement is negative, such that alternate solutions will

be found in the next iteration. This continues until the solution no longer changes. In this case

the solution is considered optimal, even after the negative reinforcement and when it is compared

to the optimistic belief for (unseen) alternative solutions. The more optimistic the a priori belief

is, the more different solutions are explored. This means that the level of optimism can be used

as a parameter to steer the algorithm towards global search, usually at the expense of additional

iterations.

2.5 The algorithm

Algorithm 1 shows the global steps of the method. It is worked out in detail for the three

problems in Sections 3, 4 and 5.

Algorithm 1 Simple feedback mechanism.
1: procedure SimpleFeedback(x, F1, F2, c̃1, c)

2: while c̃1 has not converged do

3: ŷ ← F1(x, c̃1)

4: ẑ ← F2(x, ŷ)

5: c̃1 ← Update(c̃1, ŷ, ẑ, c) . Update c̃1(x, ŷ) := c(x, ẑ)

6: end while

7: end procedure

3 THE PALLET MATCHING PROBLEM 7

3 The pallet matching problem

3.1 The problem

To introduce the pallet matching problem, we consider the operational planning of an automated

warehouse that contains pallets. At the warehouse, orders arrive that consist of a number

of orderlines, which we call requests. Each request needs to be matched with a pallet in the

warehouse, where some requests can be fulfilled by multiple pallets in the warehouse. The

requests need to be matched in pairs of two to be stacked for transportation. Since the requests

already contain information about the physical properties of the pallets that can be used for

each request, information about feasible stacking possibilities is available at the request level.

If two requests are stacked, the corresponding pallets need to be retrieved from the warehouse

in the proper sequence. First the top pallet is retrieved, and is lifted while the bottom pallet

is retrieved and arrives below the top pallet. Depending on the positions of the pallets in the

warehouse, parts of the automated retrieval may be done in parallel. This means that the total

time it takes to retrieve two pallets depends on the combination of the pallets. The problem is

how to stack the requests and match the pallets to requests such that the total retrieval time for

the resulting combinations of pallets is minimized.

Requests

Pallets

Figure 2: Visualization of the pallet matching problem

3 THE PALLET MATCHING PROBLEM 8

Figure 2 is a schematic representation of the problem. The orange nodes indicate requests,

while the purple nodes correspond to pallets. The lines indicate the matches of pallets to requests

and the requests that are stacked, but the retrieval time is defined by the resulting combinations

of pallets, as indicated by the dashed lines. Since the retrieval times should be minimized, we

sometimes refer to them as the ‘costs’ for the combinations of pallets. Formally the order of the

pallets within the stack does matter, but since the optimal order can easily be determined, we

define the costs for each combination as the minimum retrieval time for the optimal order of the

pallets within the stack, respecting feasible stacking constraints.

3.2 Mathematical problem formulation

The pallet matching problem can be expressed as a mathematical program using the following

notation:

• Set of pallets P

• Set of requests R

• Symmetric ‘cost matrix’ T with tij = tji the retrieval time for a combination of pallets

i ∈ P and j ∈ P

• Matrix A with aik = 1 if pallet i ∈ P can be used to fulfill request k ∈ S

• Symmetric matrix B with bk` = 1 if requests k ∈ S and ` ∈ S can be stacked

Using matrix algebra, it can be seen that the matrix ABA′ contains a nonzero entry for every

combination of pallets that can potentially be stacked.

We introduce the following decision variables:

xij =

 1 if pallet i and j form a combination

0 otherwise
i, j ∈ P, (ABA′)ij > 0

yik =

 1 if pallet i is matched to request k

0 otherwise
i ∈ P, k ∈ R, aik = 1

Now the pallet matching problem can be expressed as a Mixed Integer Program (MIP) as

follows:

3 THE PALLET MATCHING PROBLEM 9

min
∑

(i,j):(ABA′)ij>0

tijxij (1)

s.t.
∑

j:(ABA′)ij>0

xij + xji =
∑

k:aik=1

yik i ∈ P (2)

∑
i:aik=1

yik = 1 k ∈ R (3)

∑
k:aik=1

yik ≤ 1 i ∈ P (4)

yik + xij + yj` ≤ 2 i, j ∈ P, k, ` ∈ R, aik = 1, aj` = 1, bk` = 0 (5)

xij ∈ {0, 1} i, j ∈ P, (ABA′)ij > 0 (6)

yik ∈ {0, 1} i ∈ P, k ∈ R, aik = 1 (7)

The formulation is explained below:

(1) The objective is to minimize the total retrieval time for all combinations of

pallets that are selected.

(2) Pallets should be combined with another pallet if and only if they are matched

to a request.

(3) Each request should be fulfilled by exactly one pallet.

(4) Each pallet can fulfill at most one request.

(5) Prevent that a combination of pallets together with the matchings of these

pallets to requests corresponds to a non-stackable combination of requests.

(6), (7) Define decision variables.

The number of constraints (5) can theoretically be as large as (|P | · |R|)2, so that it is impractical

to include them explicitly. Since only very few of the constraints are required for finding the

optimal solution, they should be added to the problem lazily. In our implementation, we do

this by solving the problem without the constraint after which we check if any of the resulting

matches is infeasible. If so, we add the corresponding constraint (5) and resolve the problem,

until no more infeasible matches occur. Using Gurobi (Gurobi Optimization, 2014) as a MIP

solver, this procedure enables us to find the optimal solution which we use to benchmark the

results of our framework.

3 THE PALLET MATCHING PROBLEM 10

3.3 Decomposition of the problem

In order to apply the framework we described in Section 2 we need to decompose the problem into

two subproblems that can subsequently be solved. Although there are multiple ways in which

this may be done, we choose the following method. In the first phase, we make stacks of requests

by solving a (non-bipartite) weighted matching problem. In the second phase the pallets are

matched to requests. Although the second phase looks like a bipartite matching problem, this is

not the case since costs depend on the resulting combinations of pallets rather than directly on

the matches of pallets to requests. The problem may be formulated as a weighted set packing

problem, but this problem is NP-hard (Crescenzi and Kann, 1995). Therefore we solve it using

the MIP formulation from Section 3.2, where the matrix B is updated such that only the fixed

stacks of requests are allowed. This severely limits the complexity of the problem since the

number of variables is reduced as (ABA′)ij now only has nonzero entries for combinations of

pallets that correspond to the fixed stacks of requests. This leads to instances which can be

solved in reasonable time using the Gurobi solver.

3.4 Filling in the ingredients

By decomposing the problem into two subproblems we have the ingredients needed to apply the

simple feedback mechanism.

3.4.1 The intermediate solution y

The intermediate solution y is a matching of requests. We write yk` = 1 if request k is matched

to request ` and yk` = 0 otherwise.

3.4.2 The cost metric c1

c1(x, y) gives for the matching y the costs and can therefore be represented by a cost matrix D.

The matrix should either be symmetric or only the upper triangular part should be considered.

If we let the entry dk` from the matrix represent the cost for matching requests k and `, then

c1(x, y) =
∑
k,`∈R:k<` yk`dk`.

3.4.3 The function F1

F1(x, c1) solves the general weighted matching problem using the cost metric c1, thus using the

cost matrix D. A minimum cost perfect matching is found using the LEMON (2014) matching

3 THE PALLET MATCHING PROBLEM 11

library. This library solves the general (non-perfect) weighted maximum matching problem, but

it can be shown that by using the weight matrix W = K −D, for a sufficiently large constant

K, the solution corresponds to the minimum cost maximum cardinality matching for D. This

matching will be perfect if and only if a perfect matching exists. If no perfect matching exists,

the problem is infeasible since not all requests can be stacked, regardless of D.

3.4.4 The function F2

F2(x, y) solves the problem of optimally matching the pallets to the requests given the request

matchings in y. As was described in Section 3.3, the problem is solved using the MIP formulation

with the matrix B updated according to the matchings of pallets. More precisely, B is updated

such that bk` = yk`.

3.4.5 The a priori belief c̃1

The chosen decomposition of the pallet matching problem is a perfect example for which an

optimistic a priori belief for c̃1 can be defined. This is because c1 decomposes into independent

components corresponding to dk` for which we can calculate a lower bound. In words, for any

combination of requests k and ` we can define d̃k` (corresponding to c̃1) as the minimum costs

over all possible combinations of pallets that can result from this combination of requests:

d̃k` = min
i,j∈P :aik=1,aj`=1,i6=j

tij ∀k, ` ∈ R. (8)

Figure 3 uses an example to illustrate how the entry d̃12 is calculated. Top left is the stackability

matrix B, top right and bottom left are the pallet request matrix A and bottom right is the cost

matrix T , so the full matrix is
(
B A′

A T

)
.

The a priori belief c̃1 as defined in Equation 8 is based on the assumption that we can match

to each pair of requests the best pair of pallets. This is optimistic because this assumption

implies that we assume we do not need one of the pallets of the best pair to fulfill other requests.

However, it is never pessimistic since the costs of the final matching cannot be lower than the

lower bound.

3.4.6 The updating mechanism of c̃1

If after the first iteration for the solution z it holds that c(x, z) = c̃1(x, y), the algorithm has

immediately found the optimal solution, since c̃1 represents the lower bound. Typically, we will

find a value c(x, z) > c̃1(x, y), which means that we need to adjust the values of d̃k`. Note that

3 THE PALLET MATCHING PROBLEM 12

− 1 0 0 0 0 1 0 1 0 0

1 − 1 1 1 0 1 1 0 0 1

0 1 − 1 1 1 0 1 1 0 1

0 1 1 − 1 0 1 1 0 0 0

0 1 1 1 − 52 54 6 57 27 56

0 0 1 0 52 − 91 63 57 5 47

1 1 0 1 54 91 − 27 39 84 42

0 1 1 1 6 63 27 − 69 10 21

1 0 1 0 57 57 39 69 − 73 24

0 0 0 0 27 5 84 10 73 − 31

0 1 1 0 56 47 42 21 24 31 −

Requests Pallets

R
eq
u
es
ts

P
a
ll
et
s

Figure 3: Calculating entry d̃12 from the lower bound matrix D̃ for c̃1

c(x, z), the final cost of the solution, is the sum of the costs for the resulting pairs of pallets. The

costs for each pair of pallets can directly be linked to the pairs of requests, so the trivial way

of updating c̃1(x, y) to represent the actual cost is by updating the values of d̃k` according to

the observed costs for the pairs of pallets corresponding to the pairs of requests. In more formal

notation, write the solution z as zk representing the pallet that is matched to request k. Then

we update d̃ using the following formula:

d̃k` = tzk,z` ∀k, ` ∈ R : yk` = 1. (9)

3.5 Simple feedback mechanism for the pallet matching problem

Filling in the steps from Section 3.4 in the algorithm in Section 2.5 results in Algorithm 2 for

the pallet matching problem.

3 THE PALLET MATCHING PROBLEM 13

Algorithm 2 Simple feedback mechanism.
1: procedure SimpleFeedbackPalletMatching(x)

2: D ← calculateLowerBoundMatrix(x)

3: while true do

4: ŷ ← matchRequests(x,D)

5: ẑ ← matchPallets(x, ŷ)

6: if c̃1(x, ŷ,D) == c(x, ẑ) then return

7: end if

8: D ← Update(D, ŷ, ẑ, c) . Update c̃1(x, ŷ) := c(x, ẑ)

9: end while

10: end procedure

3.6 Variant: a heuristic approach for the second subproblem

For the pallet matching problem, solving the NP-complete second subproblem to optimality is

done using the MIP formulation. This may be impractical if the size of the instance grows,

especially if it has to be done repeatedly using the feedback mechanism. For most practical

problems, we would run into the same problem: it is very rarely possible to solve the subproblems

to optimality. This raises the question whether the simple feedback mechanism still remains

applicable if heuristics are used to solve the subproblems. To get some insight in how this works,

we propose to replace the optimal procedure F2(x, y) with a heuristic method, which we will

denote with F̃2(x, y).

3.6.1 The function F̃2

As a heuristic method F̃2(x, y) for the second subproblem, we also choose to repeatedly solve

simple matching problems. This time, the matching problem is a bipartite matching problem

because each match consists of one request and one pallet. Let m(k) be the request to which

request k is matched in the first step, so ` = m(k) if request k is matched to `. In other words,

` = m(k) if and only if yk` = 1, and this also implies that k = m(`). We define the entry eik of

the matrix E for matching pallet i to request k as the minimum costs that result, if, given the

matching of i to k, the optimal pallet j is matched to request ` = m(k):

eik = min
j:aj,m(k)=1

tij . (10)

Note that this ‘best response’ is mutually exclusive, thus if (i, j) = arg mini,j:aik=1,aj,m(k)=1 tij ,

then eik = ej,m(k) = tij . We apply a similar transformation as with the request matching problem

to transform the problem into a maximum weighted matching problem.

3 THE PALLET MATCHING PROBLEM 14

3.6.2 Motivation for a greedy heuristic

After the first iteration, if in the solution each request is matched to the optimal pallet, the

solution is optimal. If not, some of the requests may still be matched to the optimal pallets, but

to other requests suboptimal pallets have been assigned if the optimal pallets have been used for

other requests. Moreover, as a result of a suboptimal matching to a request, the matching of the

pallet to the complementary request (the request that was matched to the first request) may be

suboptimal as well, since the best response is defined by the ideal pallet for the first request. In

other words, knowing that the first request is matched to a suboptimal (second choice) pallet,

we may want to assign a different (conditionally optimal) pallet to the complementary request.

In order to make this possible, we suggest a simple greedy procedure in which we fix the

assignment of pallets to requests if for a pair of requests the optimal pallets have been matched

to both requests. Then we remove these pallets and requests from the problem, such that the

best responses in the cost matrix E are updated. We solve the smaller problem and repeat this

procedure. Typically, this converges to a situation where no unmatched requests remain, but

it may occasionally happen that no pair of requests is matched to their ideal pair of pallets.

This happens when two pairs of requests have the same ideal pair of pallets: in that case it

may happen that one of the pallets is matched to a request of the first pair, while the other

is matched to a request of the second pair. Although ideally some branching scheme would be

used to determine which of the pairs gets assigned the pair of pallets, we continue greedily by

applying a simple mechanism comparable to the first step: for each matched pallet i to request

k we update the costs eik to the actual costs tij resulting from this match. Here j is the pallet

that is matched to request ` = m(k).

We experimented with applying the simple feedback mechanism in general for the second

subproblem. However, for this particular problem, this turned out not to be very effective.

Using the simple feedback mechanism, the costs for the pallets that are mutually matched to

their best responses will not be updated and therefore these matchings are implicitly fixed just

as with the greedy strategy. However, for the other pallets, the costs get updated according to

the cost of assignments that have been the (accidental) result of decisions based on false beliefs

for the best responses. Therefore the updating mechanism is ineffective, while we can much more

accurately update the best response matrix E by disregarding the matches that we know are

fixed, which is why we implemented the greedy strategy.

3 THE PALLET MATCHING PROBLEM 15

3.7 Experiments

We solved a test set of instances using the following three methods:

• Solving the optimal MIP using lazy constraints

• Applying the two-step approach until convergence using the conditionally optimal MIP to

solve the second subproblem

• Applying the two-step approach until convergence using the greedy repeated matching

heuristic for the second subproblem

3.7.1 Dataset

The dataset consists of 10 randomly generated instances:

• P = {1, ..., 52}

• R = {1, ..., 500}

• C is a 500× 500 matrix with cij

∼ Unif(0, 1) if i < j

= cji if i > j

• A is a 500× 52 matrix with aij ∼ Bern(0.02)

• B is a 52× 52 matrix with bk`

∼ Bern(0.7) if k < `

= b`k if k > `

In a typical trailer there are 2 columns with 13 stacks of 2 pallets, which is why we consider

instances with 2 · 13 · 2 = 52 pallets. Furthermore, 500 is a reasonable estimate for the size of the

warehouse. We assume that the (normalized) ‘costs’ for retrieving any combination of two pallets

is uniformly distributed between 0 and 1, that two arbitrary requests can stack with probability

0.7 and that a pallet can be used for each request with probability 0.02. As a result, on average

0.02 · 500 = 10 pallets can be used for each request. Furthermore we assure that A and B are

symmetric, which means that with stacking (both requests and pallets), we do not need to keep

track of the order of the pallets or requests in the stack.

3.7.2 Results

The results for the method using the optimal approach for the second phase with the 10 instances

are in Table 1, and the results when using the heuristic for the second phase are in Table

3 THE PALLET MATCHING PROBLEM 16

Figure 4: Results for 10 randomly generated instances

2. In Figure 4 the results using both approaches are visualized. Since lower costs are better,

the two step approach obviously results in lesser quality solutions than the optimal approach.

However, for the two step approach with optimal second step, the average ‘gap’ is only 2.88%.

If additionally we use a heuristic for the second step, the gap is 4.55%, so this is only a minor

additional loss. This is average behaviour because we observe that for our instances, in seven

out of ten cases, using the heuristic for the second steps results in the same final solution. In one

case using the heuristic actually improves the result while only for two cases the result is strictly

worse.

To give some insight in how the mechanism works, Figure 5 plots c̃1(x, y) and c(x, z) against

the iterations using the optimal approach for the second phase for the 10 instances. From this

we observe that typically convergence is achieved within 5 iterations. In most cases, the quality

of the solution increases in subsequent iterations. In some cases, first a worse solution is found

but after that the solution significantly improves and the mechanism terminates with a solution

better than the initial solution. In one case c̃1(x, y) = c(x, z) from the start, which means that

we could optimally match all pallets and the solution does not change at all and in one case the

solution quality decreases first but finally the initial solution is found as the best.

3 THE PALLET MATCHING PROBLEM 17

Instance Optimal Initial solution Final solution Convergence

solution Val Gap Val Gap It Time

1 0.0162 0.0282 73.98 % 0.0162 0.14 % 3 0.36 s

2 0.0203 0.0448 120.52 % 0.0221 8.73 % 5 0.24 s

3 0.0196 0.0196 0.00 % 0.0196 0.00 % 1 0.22 s

4 0.0228 0.0544 138.01 % 0.0241 5.62 % 5 0.31 s

5 0.0167 0.0431 158.70 % 0.0176 5.67 % 4 0.41 s

6 0.0196 0.0405 107.16 % 0.0202 2.98 % 5 0.43 s

7 0.0141 0.0192 36.30 % 0.0141 0.00 % 2 0.38 s

8 0.0162 0.0355 118.93 % 0.0168 3.60 % 4 0.40 s

9 0.0168 0.0445 164.92 % 0.0168 0.00 % 5 0.22 s

10 0.0252 0.0257 2.11 % 0.0257 2.11 % 7 0.16 s

Average 0.0187 0.0355 92.06 % 0.0193 2.88 % 4.1 0.16 s

Table 1: Results for the 10 instances using the conditionally optimal MIP approach for the

second phase

Instance Optimal Initial solution Final solution Convergence

solution Val Gap Val Gap It Time

1 0.0162 0.0459 183.24 % 0.0183 13.01 % 4 0.11 s

2 0.0203 0.0448 120.52 % 0.0221 8.73 % 5 0.13 s

3 0.0196 0.0196 0.00 % 0.0196 0.00 % 1 0.03 s

4 0.0228 0.0544 138.01 % 0.0239 4.46 % 5 0.09 s

5 0.0167 0.0431 158.70 % 0.0176 5.67 % 4 0.11 s

6 0.0196 0.0405 107.16 % 0.0202 2.98 % 5 0.08 s

7 0.0141 0.0192 36.30 % 0.0141 0.00 % 2 0.05 s

8 0.0162 0.0782 382.00 % 0.0176 8.58 % 5 0.12 s

9 0.0168 0.0445 164.92 % 0.0168 0.00 % 5 0.07 s

10 0.0252 0.0257 2.11 % 0.0257 2.11 % 7 0.06 s

Average 0.0187 0.0416 129.30 % 0.0196 4.55 % 4.3 0.06 s

Table 2: Results for the 10 instances using the heuristic approach for the second phase

3 THE PALLET MATCHING PROBLEM 18

Figure 5: c̃1(x, y) (dashed purple) and c(x, z) (blue) plotted against the iterations

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 19

4 The capacitated vehicle routing problem

4.1 The problem

The vehicle routing problem (Toth and Vigo, 2001) is one of the most intensively studied combi-

natorial optimization problems. It knows many variations that include special restrictions such

as time windows and driving time limitations but we consider it only in its most basic form:

the capacitated vehicle routing problem (CVRP) with a single depot. This problem is as follows:

given a set of customers with a certain demand for each customer and a single depot, determine

a set of routes starting and ending at the depot such that the total demand for the customers

in each route does not exceed the capacity of the vehicle and such that the total route length,

measured in driving time or distance, is minimized. We assume that the driving time or dis-

tance does not depend on the driving direction, so formally we consider the symmetric CVRP

(SCVRP), although we will write it as CVRP.

9.4

22.0

7.2
10.0 6.3

9.5
12.1

6.1

7.1

15.0

7.1

6.1

10.0

12.0

10.6

9.1

7.2
10.0

5.7

6.4

6.78.5

7.3

15.8

11.410.3

6.4

14.0

12.4

12.0
6.1

9.2

8.6

8.0

8.1

10.0

7.3

6.1

6.7

7.0

13.9

10.0

7.6

8.2

12.0

2.2
14.8

14.4

9.4

12.1

10.6

8.5

14.3

7.6

7.8

Figure 6: Visualization of the (capacitated) vehicle routing problem

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 20

4.2 Mathematical problem formulation

The CVRP can be expressed as a mathematical program using the following notation:

• Set of locations V = {0, ..., n}, with 0 ∈ V the depot and V \ {0} the set of customers

• Symmetric ‘cost matrix’ T with tij = tji the driving time or distance between locations i

and j, i, j ∈ V

• Demand ai for all customers i ∈ V \ {0}

• Vehicle capacity B

We will use terminology from graph theory with this problem: the set V is the set of nodes or

vertices, while every route section between nodes i and j, i 6= j is called an (undirected) edge.

Let the following decision variables be defined:

xij =

 1 if a vehicle traverses the edge from i to j

0 otherwise
i, j ∈ V, i < j

Now the CVRP can be expressed as a Mixed Integer Program (MIP) as follows:

min
∑

i,j∈V :i<j

tijxij (11)

s.t.
∑
h<i

xhi +
∑
j>i

xij = 2 i ∈ V \ {0} (12)

∑
i∈S

∑
h<i,h/∈S

xhi +
∑
i∈S

∑
j>i,j /∈S

xij ≥ 2r(S) S ⊆ V \ {0}, S 6= ∅ (13)

xij ∈ {0, 1} i, j ∈ V \ {0}, i < j (14)

x0j ∈ {0, 1, 2} j ∈ V \ {0} (15)

The objective and constraints are explained below:

(11) The objective is to minimize the total distance or time that is driven by all of

the vehicles.

(12) Each customer should have exactly two adjacent edges that are driven. As a

result, the number of edges adjacent to the depot will be even so a Eulerian tour

exists for the set of edges that is selected, with total distance corresponding to

the objective.

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 21

(13) For each nonempty subset of the customers S, the number of vehicles that go

from or to a location in S from or to a location in V \ S should at least be

two times the number of vehicles required to serve the customers S, in terms of

capacity. This number r(S) is the solution of the one-dimensional bin packing

problem BPP (Martello and Toth, 1990) for items with size ai, i ∈ S and bin

size B. The factor two is because each vehicle should drive to and from the

set of customers. This set of constraints not only ensures that the capacity

restrictions are met, but also ensures that the graph representing the solution

is connected, since for every cut (partition of the graph in two sets of nodes),

there are at least two edges selected such that one end of the edge is in the first

set and the other end in the second set. Together with constraints (12) this

ensures the existence of a single Eulerian tour that visits al nodes, although

optionally the depot is visited multiple times.

(14) Define decision variables for edges between two customers. Each edge can be

traversed at most one time.

(15) Define decision variables for edges between a customer and the depot. Each

edge can be traversed at most two times, in order to allow for routes consisting

of a single customer.

Apart from being the capacity constraints, the constraints (13) can be seen as generalizations of

the subtour elimination constraints that occur with the travelling salesman problem (TSP) and

the number of them is exponential in the size of the problem. Therefore, they should be added to

the problem dynamically, just as we did for the matching problem and is done by Pataki (2003)

for the TSP. However, exactly solving the problem using this MIP formulation is only possible

for very small sized instances. Many other exact formulations have been developed, for instance

using column generation (Barnhart et al., 1998), but we will not consider those here.

4.3 Decomposition of the problem

The CVRP is a generalization of the travelling salesman problem (TSP) (for an introduction

see, for example, Lawler et al. (1985)), that has been mentioned already in the context the

MIP formulation. The TSP consists of finding the minimum length route to visit a set of

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 22

customers using a single vehicle. Two classes of often used solution methods for the CVRP use

the fact that the problem generalizes the TSP: the route-first-cluster-second and cluster-first-

route-second methods. These methods decompose the CVRP problem in two subproblems: a

clustering problem and a TSP, where the difference between the two classes is determined by the

order in which the problems are solved. If first the clusters are made, then the second subproblem

is a TSP which can be solved to create a route for each cluster separately. If first the routing

is done, then a single TSP is solved with all the locations. In the second step, the solution is

broken down into sections for single vehicles, which need to be transformed into feasible routes

by connecting the beginning and end to the depot, respecting the capacity restrictions.

The decomposition that we will use as the basis for our simple feedback mechanism is the

cluster-first-route-second method developed by Bramel and Simchi-Levi (1995). This method is

inspired by the famous paper of Fisher and Jaikumar (1981), who propose to create clusters by

solving a generalized assignment problem (GAP) using seed locations. Bramel and Simchi-Levi

build on this approach but use the the capacitated concentrator location problem (CCLP) rather

than the GAP for the clustering. Using this method, seed sets of locations can be used rather

than single locations and the best seed sets are selected when the clusters are created. The reason

that we use the cluster-first-route-second method developed by Bramel and Simchi-Levi is that

it is a very clear decomposition of the problem in two phases. Although the original paper uses a

subgradient method to solve the CCLP, we take advantage of increased computation power and

the availability of solvers as Gurobi (Gurobi Optimization, 2014) to solve the problem directly

using the MIP formulation. For reasonable sized clusters, the TSP in the second subproblem can

be solved to optimality using the MIP formulation with dynamically added subtour elimination

constraints (Pataki, 2003).

4.4 Filling in the ingredients

4.4.1 The intermediate solution y

The intermediate solution y is the set of clusters that has been formed by the CCLP. Although

there are multiple ways to represent clusters, for instance using an adjacency matrix or simply

by enumerating the clusters, we will use the structure resulting from the CCLP by listing the

connections that are made. More formally, let yij = 1 if location i is connected to seed j, for

i, j ∈ V \ {0}. yij = 1 implies that location j is a seed, so we do not need to explicitly keep track

of the seeds that are selected. For consistency, we write yjj = 1 if j is a seed and is therefore

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 23

‘connected’ to itself.

4.4.2 The cost metric c1

The cost metric c1(x, y) gives for the solution y of the CCLP for instance x the cost. Although

the CCLP distinguishes setups costs and connection costs, we will add the setup costs for a

seed i to the connection costs of location i to seed i, which are always zero. Therefore, we

let c1 be represented by a matrix D with entries dij for the connection costs of location i

to seed j for i 6= j and djj the setup costs for seed j. Using this matrix, c1 is defined as

c1(x, y) =
∑
i∈V \{0}

∑
j∈V \{0} yijdij .

4.4.3 The function F1

F1(x, c1) solves the CCLP using the cost matrix D. Although Bramel and Simchi-Levi present a

formulation in which the seed sets can consist of multiple locations, we restrict ourselves to the

case where each seed set only contains a single location, or in other words, each location is a seed.

Therefore the locations and seeds are in the same domain, and we can use a modified version of

the problem formulation that only requires one set of decision variables, which for convenience

we will denote with y, corresponding to the solution that results.

yij =

 1 if location i is connected to seed location j

0 otherwise
i, j ∈ V \ {0}, i 6= j

yjj =

 1 if location j is a seed location

0 otherwise
j ∈ V \ {0}

Now the CCLP can be formulated as follows:

min c1(x, y) =
∑

i∈V \{0}

∑
j∈V \{0}

yijdij (16)

s.t.
∑

j∈V \{0}

yij = 1 i ∈ V \ {0} (17)

∑
i∈V \{0}

aiyij ≤ B j ∈ V \ {0} (18)

yij ≤ yjj i, j ∈ V \ {0}, i 6= j (19)

yij ∈ {0, 1} i, j ∈ V \ {0} (20)

The formulation is explained below:

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 24

(16) The objective is to minimize the total setup costs for the seed locations (the

terms for which i = j) and the connection costs to the seed locations.

(17) Ensure that each location is connected to exactly one seed location (or is a seed

location itself).

(18) Ensure that the demand connected to each seed location is less than the max-

imum capacity B.

(19) Ensure that location j is a seed location if location i is connected to location

j.

(20) Define decision variables y.

Ideally we would solve the CCLP to optimality using Gurobi, within an accepted tolerance for

Mixed Integer Programming, but we experienced that this is computationally far too expensive.

We could implement the subgradient method that was proposed by Bramel and Simchi-Levi in

the original paper, but this is not the purpose of this thesis. Since the result would be a heuristic,

we choose instead to directly solve the MIP with a lower optimality tolerance, i.e. 5%, which

means that in practice the Gurobi solver serves as a heuristic for the CCLP.

The result of F1(x, c1) is y, which indicates a number of seeds and connections to those

seeds, and therefore represents a number of clusters. Each cluster corresponds to a vehicle in the

solution, and therefore for each cluster F2 should create a route that visits the locations in the

cluster and starts and ends at the depot.

4.4.4 The function F2

F2(x, y) solves the symmetric TSP using the subtour elimination method. For each cluster in y,

the TSP should be solved for the set of locations in the cluster and the depot. For the TSP, it

is irrelevant that the depot is the actual start and end location. Let (for a certain clustering y)

K = {j ∈ V \ {0} : yjj = 1} be the set of seeds corresponding to the clusters, and let Vj , j ∈ K

be the sets of locations for each cluster, including the depot, so Vi ∩ Vj = {0} ∀i, j ∈ K, i 6= j

and
⋃
j∈K Vj = V . For clarity, we will now refer to each cluster, or route, with index k ∈ K.

For the symmetric TSP formulation for each cluster k ∈ K, we need a single set of decision

variables, which we denote with z such that this corresponds to the overall solution:

zij =

 1 if route k uses the edge from i to j

0 otherwise
i, j ∈ Vk, i < j

Now the TSP can be formulated as follows:

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 25

min
∑

i,j∈Vk,i<j

tijzij (21)

s.t.
∑
h<i

zhi +
∑
j>i

zij = 2 i ∈ Vk (22)

∑
i,j∈S,i<j

zij ≤ |S| − 1 S ⊂ V, S 6= ∅ (23)

zij ∈ {0, 1} i, j ∈ V, i < j (24)

The formulation is explained below:

(21) The objective is to minimize the total distance or time of the route.

(22) Each location, so each customer and the depot, should have exactly two adja-

cent edges that are driven.

(23) For each subset of the locations, the number of edges connecting two locations

in that subset should be lower than the number of locations. This ensures that

no subtours can exist since a subtour contains the same number of edges as

locations. Together with constraints (22) this ensures that a single Eulerian

tour containing all locations is found.

(24) Define decision variables z.

Note that in the formulation clearly parts of the CVRP formulation in Section 4.2 can be recog-

nized. However, there are a few differences: constraint (22) equals constraint (12) of the CVRP

but now includes the depot since this is no longer implied by the capacity constraints (13) of the

CVRP. These capacity constraints are no longer required, but the implied subtour elimination

constraints are explicitly added. All variables are binary, since no edge needs to be traversed

twice if the assumption is made that |Vk| > 2. This can be done because for |Vk| = 2 (and even

for |Vk| = 3) the solution is trivial.

4.4.5 The a priori belief c̃1

The a priori belief c̃1 is represented by the matrix D̃. Unlike the pallet matching problem, we

now cannot define an exact optimistic a priori belief by calculating an exact lower bound. This

is because the connection costs for a location to a seed set represent the increase in length of the

route if the location is inserted into the route. This clearly depends on the order in which the

locations are inserted and on the other locations in the route. Therefore with this problem we

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 26

define a parameter γ ∈ (0, 1] that describes the level of optimism we use. This parameter scales

the insertion costs, such that a lower γ results in lower costs and thus a more optimistic c̃1.

We do not scale the setup costs d̃jj for locations j, because we consider them as truth: if no

other locations are connected then the length of the route only serving customer j clearly is 2t0j .

We could use a similar argument to state that, given the fixed setup costs, the insertion costs d̃ij

should always be equal to t0i+tij−t0j since it should hold that d̃jj+d̃ij = t0j+t0i+tij , according

to routes with two locations and the depot. However, this uniquely defines all insertion costs such

that there is no possibility to update the belief matrix D̃. This shows that, because we restrict

c̃1 to being represented by the matrix D̃, it is not possible to let c̃1 represent the true c1 for

all solutions. Fortunately, for the feedback mechanism it is only required that c̃1 represents the

actual c1 for good quality solutions, and that the metric is worse for worse solutions (following

from Proposition 1). Because of this, we do not restrict D̃, apart from d̃jj = 2t0j and d̃ij ≥ 0.

The last inequality simply states that a route can never be shorter by adding an additional

location.

Although we do not restrict the matrix D̃ according to routes of two locations and the depot,

we use the equalities for those routes to construct our a priori belief. If we also apply the

‘optimism parameter’ γ, the a priori belief matrix D̃ is defined as follows:

d̃ij = γ(t0i + tij − t0j) ∀i, j ∈ V \ {0}, i 6= j, (25)

d̃jj = 2t0j ∀j ∈ V \ {0}. (26)

4.4.6 The updating mechanism of c̃1

It is very unlikely that after the first iteration c(x, z) = c̃1(x, y), because c̃1 is not an exact

bound. If γ is chosen suitably optimistic, then it will hold that c(x, z) > c̃1(x, y), and we need

to adjust the connection costs for the clusters such that c(x, z) = c̃1(x, y). Note that the costs

c(x, z) decompose into a cost for each route k: if TSP (Vk) is the TSP solution for route k ∈ K,

then c(x, z) =
∑
k∈K TSP (Vk). Refer that the index k of each route indicates the seed location,

(so ykk = 1 for k ∈ K), so we can write the believed costs for the route as 2d̃kk+
∑
i∈Vk\{0,k} d̃ik.

Again, we consider d̃kk as truth and therefore only update d̃ik for i 6= k. This implies that after

the update the following should hold:∑
i∈Vk\{0,k}

d̃ik = TSP (Vk)− 2d̃kk ∀k ∈ K. (27)

Although there are multiple ways in which this can be done, we choose to scale the entries

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 27

from the belief matrix D̃ (in the previous iteration) such that the equation holds. In other words,

we update D̃ using the following formula:

d̃ik =
d̃ik∑

i∈Vk\{0,k} d̃ik
(TSP (Vk)− 2d̃kk) ∀k ∈ K. (28)

Figure 7 shows an example how the updating mechanism works. The first subfigure calculates

c̃1(x, ŷ) before the update, the second subfigure illustrates the optimal TSP tour ẑ and the length

c(x, ẑ), and the third figure illustrates how the insertion costs are scaled such that c̃1(x, ŷ) =

c(x, ẑ).

We have experimented with alternatives, such as updating D̃ by scaling the initial D̃ rather

than the last D̃, or scaling the observed leave-one-out insertion costs for an iteration, and up-

dating by using convex combinations of the updated matrices D̃(1), D̃(2) and D̃(3) according to

the three options.

Definition 4. A convex combination of matrixes D̃(1), ..., D̃(n) is a matrix D̃, such that for each

entry d̃ik it holds that d̃ik =
∑n
j=1 αj d̃

(j)
ik , where αj ≥ 0 and

∑n
j=1 αj = 1.

Unfortunately, using the convex combination ruins the natural convergence properties of the

method since c̃1 could be updated even if c(x, z) = c̃1(x, y). Of the individual options, scaling the

last D̃ performed best. For any of the methods, with the advanced update mechanism described

next, it may happen that a connection cost becomes zero (if a location lies exactly in between

two other locations), which should be appropriately accounted for.

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 28

1.

0

3

7.1
7.1

d33 = 2 · 7.1 = 14.2 γ = 0.8

1

3.2

4.5

d13 = 0.8(3.2 + 4.5− 7.1) = 0.48

2

6.7

2.2

d23 = 0.8(6.7 + 2.2− 7.1) = 1.44

4

5.1

4.0
d43 = 0.8(5.1 + 4.0− 7.1) = 1.60

c̃1(x, ŷ) = 14.2 + 0.48 + 1.44 + 1.60 = 17.72

Calculation of c̃1(x, ŷ)

2.

0

4

2

1

3

3.2

3.6

2.2

5.1

4.0

c(x, ẑ) = 3.2 + 3.6 + 2.2 + 4.0 + 5.1 = 18.1

Calculation of c(x, ẑ)

3.

0

3

7.1
7.1

1

3.2

4.5 2

6.7

2.2

4

5.1

4.0
18.1−14.2
17.72−14.2 = 3.9

3.52 ≈ 1.1d33 = 14.2

d13 := 1.1 · 0.48 = 0.53

d23 := 1.1 · 1.44 = 1.60

d43 := 1.1 · 1.60 = 1.77

c̃1(x, ŷ) = 14.2 + 0.53 + 1.60 + 1.77 = 18.10 = c(x, ẑ)

Updating of c̃1(x, ŷ) such that c̃1(x, ŷ) = c(x, ẑ)

Figure 7: Illustration of the updating mechanism for the CVRP

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 29

Let c̃1 always represent the incumbent Experiments showed that updating c̃1 such that

c(x, z) = c̃1(x, y) typically results in a diverging algorithm. This is because each update of c̃1

may ruin what has been learned in previous iterations. To some extent, this is unavoidable, since

it is not possible to let c̃1 represent al previous iterations. For bad quality solutions, this is not

much of a problem, but ideally we would want c̃1 to remain accurate for good solutions. In order

to achieve this, we use the fact that we have some freedom in updating the weights to include

an additional restriction: we restrict the update of D̃ to be such that not only c(x, z) = c̃1(x, y)

for the last solution observed, but also for the best solution so far, which we call the incumbent.

More formally, if we let z∗ and y∗ represent the incumbent and ẑ and ŷ the last solution,

then we require that both c(x, ẑ) = c̃1(x, ŷ) and c(x, z∗) = c̃1(x, y∗). This means that Equation

(27) should hold for both the incumbent and the last solution. We will show using an example

how we can update D̃ such that this holds. If the new solution is better than the incumbent,

we simply update the matrix and make the new solution the incumbent. Since the incumbent is

the last solution, the equations hold trivially. Otherwise, we assume that D̃ before the update

has the property that it satisfies Equation (27) for the incumbent. If we update D̃ such that

the equation still holds, then by induction it follows that D̃ has this property for all iterations.

Now if we let K∗ be the set of seed locations for the incumbent, and K for the last solution,

then only for k ∈ K∗ ∩K the update affects Equation (27) for the incumbent. In other words,

for k ∈ K \K∗ we can normally apply the update, for k ∈ K∗ \K nothing is updated but for

k ∈ K∗ ∩K we need to update D̃ such that Equation (27) holds for the two solutions.

Let k ∈ K∗ ∩ K be a seed location for both the incumbent and the last solution. Let V ∗k

and Vk correspond to the clusters for the incumbent and the last solution respectively. Then

if V ∗k = Vk, Equation (27) trivially holds, regardless of how we update D̃. Therefore, assume

V ∗k 6= Vk and define S0 = V ∗k ∩Vk, S1 = V ∗k \Vk and S2 = Vk \V ∗k . For an illustration, see Figure

8. Now we update the connection costs d̃ik for i ∈ S0 \ {0, k} such that Equation (27) holds

with Vk replaced by S0, the intersection of the location sets of both routes. Next we update the

connection costs d̃ik for i ∈ S1 such that they sum up to the increase in length if the locations in

S1 are added to the TSP solution for S0, and we do similarly for S2. More formally, we require

the following for D̃ based on S0: ∑
i∈S0\{0,k}

d̃ik = TSP (S0)− 2d̃kk. (29)

We can fill this in in Equation (27) for V ∗k and Vk by observing that {S0, S1} and {S0, S2} are

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 30

partitions of V ∗k and Vk respectively. ∑
i∈Vk\{0,k}

d̃ik = TSP (Vk)− 2d̃kk (30)

∑
i∈S2

d̃ik +
∑

i∈S0\{0,k}

d̃ik = TSP (Vk)− 2d̃kk (31)

∑
i∈S2

d̃ik + TSP (S0)− 2d̃kk = TSP (Vk)− 2d̃kk (32)

∑
i∈S2

d̃ik = TSP (Vk)− TSP (S0) (33)

(34)

For V ∗k it holds that ∑
i∈S1

d̃ik = TSP (V ∗k)− TSP (S0). (35)

Again, we apply the scaling according to D̃, so the updating formula is (for k ∈ K∗ ∩K):

d̃ik =
d̃ik∑

i∈S0\{0,k} d̃ik
(TSP (S0)− 2d̃kk) i ∈ S0 \ {0, k}, (36)

d̃ik =
d̃ik∑
i∈S1

d̃ik
(TSP (Vk)− TSP (S0)) i ∈ S1, (37)

d̃ik =
d̃ik∑
i∈S2

d̃ik
(TSP (V ∗k)− TSP (S0)) i ∈ S2. (38)

0

2

4

5

1

6

3

Figure 8: Illustration of the intersection between the route in the incumbent solution (orange)

and the route in the last solution (blue). The seed k = 3, 0 is the depot, S0 = {0, 1, 3, 6},

S1 = {4, 5} and S2 = {2}. The thick gray line is the TSP solution for S0.

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 31

Connection costs of 0 As was mentioned, we should appropriately account for the pos-

sibility that a connection cost becomes 0. If D̃ is updated by scaling the last D̃, then once the

connection cost has become 0 it will remain 0. However, if all connection costs to update are 0,

then the denominator becomes zero and as a result the update is not well defined. Therefore, if

that is the case, we divide the insertion costs of the locations evenly over the locations. Typically

this means that a single location with insertion costs 0 gets updated to the true insertion costs

according to the last route. More formally, the updating formula becomes the following (for

k ∈ K∗ ∩K):

d̃ik =


d̃ik∑

i∈S0\{0,k}
d̃ik

(TSP (S0)− 2d̃kk) if
∑
i∈S0\{0,k} d̃ik > 0

1
|S0|−2 (TSP (S0)− 2d̃kk) otherwise

i ∈ S0 \ {0, k}, (39)

d̃ik =


d̃ik∑

i∈S1
d̃ik

(TSP (Vk)− TSP (S0)) if
∑
i∈S1

d̃ik > 0

1
|S1| (TSP (Vk)− TSP (S0)) otherwise

i ∈ S1, (40)

d̃ik =


d̃ik∑

i∈S2
d̃ik

(TSP (V ∗k)− TSP (S0)) if
∑
i∈S2

d̃ik > 0

1
|S2| (TSP (V ∗k)− TSP (S0)) otherwise

i ∈ S2. (41)

(42)

Prevent cycling Although typically the updating mechanism adjusts the ‘optimistic’ a

priori belief by increasing it, after a few iterations it may happen for some individual values that

they decrease because according to the updating formulae the ‘distribution’ of the costs over the

sets S0, S1 and S2 is different. As a result, the algorithm may cycle rather than converge to a

single c̃1. This may be prevented using a simple cycle detection mechanism which terminates

the algorithm if this happens. There are other options, such as updating the belief matrix D̃

such that not only the incumbent and the last solution are represented, but also the solution

that starts the cycle. Using Venn diagrams (Venn, 1880) it can be shown that the updating

mechanism can be extended such that the matrix D̃ represents more than two solutions, but this

may cause problems if there are empty intersection sets. We consider the implementation of the

different options without the scope of this thesis, and solve the cycling problem by limiting the

number of iterations to 100.

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 32

4.5 Simple feedback mechanism for the CVRP

Filling in the steps from Section 4.4 in the algorithm in Section 2.5 results in Algorithm 3 for

the pallet matching problem.

Algorithm 3 Simple feedback mechanism.
1: procedure SimpleFeedbackCVRP(x, γ)

2: D ← calculateSetupAndConnectionCostsMatrix(x, γ)

3: while true do

4: ŷ ← createClustersUsingCCLP(x,D)

5: ẑ ← solveTSPs(x, ŷ)

6: if c̃1(x, ẑ,D) == c(x, ẑ) then return

7: end if

8: D ← Update(D, ŷ, ẑ, c) . Update c̃1(x, ŷ) := c(x, ẑ)

9: end while

10: end procedure

4.6 Variant: a heuristic approach for the second subproblem

Just as with the pallet matching problem we can use a heuristic approach to solve the second

subproblem. Although there are many heuristic approaches for the TSP, we use the algorithm of

Christofides (1976) because it is a very simple and elegant method that is mostly deterministic.

Christofides algorithm consists of five steps:

1. Create the minimum spanning tree MST of the graph.

2. Find a minimum cost perfect matching between the odd degree nodes of the graph.

3. Add edges corresponding to the matching to the minimum spanning tree to create a multi-

graph1 with no odd degree nodes.

4. Find a Eulerian tour in the resulting multigraph.

5. Create shortcuts in the graph to skip nodes that are visited twice.

The length of the tour that is found this way is guaranteed to be within 3
2 times the optimal tour

length. This is a theoretical worst case scenario, and we found that the tour is on average 6%

longer than optimal. For creating the MST we use the famous algorithm of Prim (1957) since

1A graph in which two nodes can be connected by more than one edge.

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 33

this is more efficient than Kruskal (1956) according to Dijkstra (1959), who also presented Prim’s

algorithm in the paper in which he develops his famous shortest path algorithm. To solve the

minimum cost perfect matching problem, we again use the LEMON (2014) library. Finding the

Eulerian tour is trivial since any subtour that is not included can be inserted at any node. The

shortcutting simply means that we remove duplicate nodes in the tour after the first occurrence.

Most steps in the algorithm are deterministic, but minor differences in the solution may be found

depending on how the Eulerian tour is constructed and which node is taken as the starting node

for shortcutting. We always create the tour in the same way and start the shortcutting at the

depot, so the algorithm is deterministic and we accept that it might be slightly suboptimal as a

consequence.

Using a heuristic for the TSP, it may occur that a tour found for an intersection set (of the

incumbent and last solution) is actually longer than the tour for the larger set of locations in the

incumbent or last solution. If in that case we apply the updating formulas, we get a negative

insertion costs, which is incorrect since the true optimal tour of a smaller set of locations is

always smaller. Therefore, for the intersection set corresponding to a seed location, we do

not only calculate a tour using the heuristic, but also by removing the locations not in the

intersection from the tour corresponding to that seed in the incumbent and the last tour. There

is one important thing to notice. If the set of locations in the tour in the incumbent is a subset

of the set of locations in the last solution, the intersection set is equal to the set of locations for

the incumbent. If in that case we find a better solution for the intersection set, we need to also

update the corresponding route for the incumbent, in order to assert that all equations remain

valid. The same holds if the set of locations in the tour in the last solution is a subset of the set

of locations in the incumbent.

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 34

4.7 Experiments

In order to test the feedback mechanism, we use the benchmark instances from Christofides and

Eilon (1969). We perform a full factorial design for a number of parameter settings, which are

described in Table 4.

Setting Values

TSP method ‘Optimal’, ‘Christofides’

Updating mechanism according to ‘Last’, ‘Initial’

Optimality tolerance CCLP 5%, 20%

Optimism parameter γ 0.6, 0.8

Table 4: Full factorial parameter design for the simple feedback mechanism for the CVRP

4.7.1 Results

Table 5 gives the results for the 100 customer instance from Christofides and Eilon (1969).

The full results tables for the other instances are given in Appendix A. It can be seen that for

one configuration, the algorithm cycles and terminates after the maximum of 100 iterations.

In general we observed that the following configuration was the best performing: using the

optimal approach for the second phase, updating the cost matrix from the previous iteration,

solving the first phase up to a MIPgap of 5 % and using the optimism parameter γ = 0.80.

This configuration gives the best tradeoff between execution time and quality of results. The

results for this configuration for all six instances are given in Table 6. We see that there is no

improvement for the smallest two instances, which indicates that the mechanism requires some

scale in order to have enough ‘flexibility’ to correctly update c̃1. For the other instances, the

improvement may seem small in absolute terms. However, since one can do no better than the

optimum, the costs for the optimal routes are unavoidable and we should only consider the gap

with the optimum. This is what can be decreased using a better solution, and indeed we see

that if we compare the gaps with the optimal (or best known) values between the first and last

iterations, we see that we are able to reduce the ‘inefficiency’ by a factor 2 to 5.

Figure 9 plots c̃1(x, y) and c(x, z) against the iterations for the 6 instances. Just as with the

pallet matching problem, we observe that in most cases the solution improves within the first

few iterations. In the plots we can see that c̃1(x, y) and c(x, z) indeed approach each other.

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 35

Instance vrp3-100

Parameters Initial solution Incumbent Convergence

Method Update Tol. γ Val Gap Val Gap It Time

‘Optimal’ ‘Initial’ 20.0 % 0.60 868.91 5.18 % 849.95 2.88 % 9 27.4 s

0.80 887.28 7.40 % 887.28 7.40 % 3 3.5 s

5.0 % 0.60 864.44 4.64 % 839.61 1.63 % 44 1243.4 s

0.80 858.54 3.92 % 845.31 2.32 % 100 1984.1 s

‘Last’ 20.0 % 0.60 868.91 5.18 % 850.82 2.99 % 5 19.4 s

0.80 887.28 7.40 % 887.28 7.40 % 3 3.5 s

5.0 % 0.60 864.44 4.64 % 848.92 2.76 % 26 753.9 s

0.80 858.54 3.92 % 832.43 0.76 % 8 169.7 s

‘Christof.’ ‘Initial’ 20.0 % 0.60 933.55 13.00 % 911.99 10.39 % 9 18.5 s

0.80 967.06 17.06 % 937.57 13.49 % 5 12.9 s

5.0 % 0.60 947.39 14.68 % 876.77 6.13 % 29 895.7 s

0.80 930.86 12.68 % 876.51 6.10 % 24 433.2 s

‘Last’ 20.0 % 0.60 933.55 13.00 % 911.99 10.39 % 9 17.1 s

0.80 967.06 17.06 % 961.44 16.38 % 5 6.7 s

5.0 % 0.60 947.39 14.68 % 883.02 6.89 % 18 558.7 s

0.80 930.86 12.68 % 891.45 7.91 % 11 234.1 s

Table 5: Results for instance with 100 customers

Instance Initial solution Incumbent Convergence

Val Gap Val Gap It Time

vrp1-50 539.22 2.78 % 539.22 2.78 % 2 0.4 s

vrp2-75 841.93 0.80 % 841.93 0.80 % 7 137.5 s

vrp3-100 858.54 3.92 % 832.43 0.76 % 8 169.7 s

vrp4-100 832.83 1.62 % 826.90 0.90 % 4 69.2 s

vrp5-120 1052.54 1.00 % 1045.42 0.32 % 7 428.5 s

vrp6-150 1076.66 4.69 % 1053.24 2.41 % 10 878.5 s

Table 6: Results for different instances with parameter settings (‘Optimal’, ‘Last’, 5.0 %, 0.80)

4 THE CAPACITATED VEHICLE ROUTING PROBLEM 36

Figure 9: c̃1(x, y) (dashed purple) and c(x, z) (blue) plotted against the iterations

5 THE RESOURCE ASSIGNMENT PROBLEM 37

5 The resource assignment problem

5.1 The problem

The resource assignment problem (RAP) (Visser, 2014) is a variant of the multiple trip vehi-

cle routing problem (MTVRP) with a single depot, time window constraints and driving time

constraints. Referring to the vehicles as trailers, the problem is to create routes for trailers for

a fixed time horizon, and assign drivers (resources) to the sections (trips) in the trailer routes.

Sections occur if the trailer needs to visit the depot multiple times, for instance because the total

demand of the customers in the route exceeds the trailer capacity. It may be optimal, or even

required, to use different drivers for a single route, for example when the total allowed driving

time is limited or more efficiency is achieved when a driver skips loading time by continuing with

another trailer. Apart from the total driving time, we consider regulations concerning breaks

after a certain driving time. This means that in a route section a break should be planned if the

cumulative driving time for the driver would otherwise exceed a certain limit. The primary goal

is to minimize the number of drivers. Secondly, the number of trailers or other measures, such

as the total driving distance, may be considered.

The RAP is a complex problem with many practical constraints. It is significantly more

complicated than the CVRP, which only takes into account capacity constraints. The RAP has

additional constraints that limit the possibilities for total route lengths for drivers, and enforce

breaks to be planned, while at the same time each customer can only be visited within a certain

time window. With the CVRP only routes for vehicles need to be created, but the RAP requires

routes to be created for both trailers and drivers, with different restrictions.

5.2 Decomposition of the problem

We use the method developed by Visser (2014) to solve the RAP in two phases. In the first

phase, we use a parallel cheapest insertion heuristic to create routes for the trailer. In order

to be able to implement the feedback mechanism, we introduce an additional parameter which

can be used to influence the insertion costs depending on the time. In the second phase, we

assign drivers to the trailer sections and plan breaks in these sections such that a feasible driver

assignment is found that minimizes the number of required drivers. This is done using an exact

column generation method. Figure 10 is an illustration of a solution, although the routes are

not shown on a map but on a Gantt chart. Each row corresponds to a driver and consists of

5 THE RESOURCE ASSIGNMENT PROBLEM 38

Figure 10: Resource assignments

multiple sections, which are colored to represent the trailers. The dark areas outlined by dashes

represent the breaks for the drivers.

5.3 Filling in the ingredients

5.3.1 The relation between the two phases

In contrast with the pallet matching problem and the CVRP, with the RAP there is no direct

relation in terms of costs between the first phase and the second phase because the unit of the

measure that is optimized is different. To see this, note that both phases for the pallet matching

problem optimize the costs/retrieval times and both phases for the CVRP optimize the total

distance. With the RAP, phase one optimizes the trailer routes with respect to the number of

trailers and the distance. This does not take the number of needed drivers into account, which

is in fact the global objective. The problem is that there is no clear relation between the trailer

routes and the number of drivers needed. We will try to introduce this relation using the notion

of a ‘topline’, which is directly related to the number of drivers and can be observed from the

solution of the second phase. Next we introduce a way to estimate the topline from the solution

5 THE RESOURCE ASSIGNMENT PROBLEM 39

Figure 11: Illustration of the topline (red), the lower bound (blue) and the bias (green)

of the first phase, and to calculate an estimate for the number of drivers needed from it.

The topline The topline is the line that encloses the intersection (per row) of the two diagrams

representing the solution if all driver shifts are sorted by either their start time or their completion

time. Typically, the difference between the two sortings will be minor, such that the topline

almost encloses both diagrams. For the example in Figure 10, there is no difference between

the sortings and the topline is as illustrated by a red line in Figure 11. If the start time of the

latest starting driver shift is before the completion time of the earliest completing driver shift,

then the shifts will intersect for all rows and the height of the topline will equal the number of

drivers. This is illustrated in Figure 12. Very rarely this is not the case, such that there are two

disjunct driver shifts, which apparently cannot be combined because of constraints. Therefore,

we consider the time between the completion time of the first shift and the start time of the last

shift as blocked and add it to the topline. From this definition it follows that the maximum of

the topline is equal to the number of drivers needed.

5 THE RESOURCE ASSIGNMENT PROBLEM 40

Figure 12: Illustration of the topline (red) with different sortings for the start and completion

time

Estimating the number of drivers The height of the topline during a time interval is a

measure for how busy the schedule is during that time interval, where gaps between shifts that

cannot be used are also counted as busy time. To estimate the number of drivers from the trailer

routes using the topline, we need to define two things: how to estimate the topline from the

trailer routes and how to estimate the number of drivers from the estimated topline. Although

we cannot observe the topline from the trailer routes, we are able to construct a lower bound for

the number of drivers by accumulating the time intervals that cannot be avoided by shifting the

trailer route sections in time. The difference between the topline and the lower bound line is a

result that depends on how the sections are shifted and where there are gaps, and we denote this

difference as the bias. Note that the lowerbound line can be calculated both for the second phase

and the first phase. This means that we can observe the bias in iteration k from the solution of

the second phase using

biask = toplinek − lowerBoundk. (43)

To estimate the topline for the next iteration from the first phase we can update the indices for

the topline and the lower bound and rewrite the formula as

toplinek+1 = lowerBoundk+1 + biask. (44)

These equations are visualized in Figures 11 and 12: the red line is the topline, the blue line is

the lower bound and the green line is the bias.

To estimate the number of drivers from the topline, it is very intuitive to take the maximum

value. However, typically the estimated topline from Equation (44) is not very smooth because

5 THE RESOURCE ASSIGNMENT PROBLEM 41

Figure 13: Illustration of the topline with the critical interval

the intervals in the lower bound line and the bias line do not correspond. Therefore, we introduce

a more robust estimator: the average height of the topline in the critical interval. Just as the

bias, we observe the critical interval from the solution of the second phase: we define it as the

interval in which the topline is the highest. By definition, the average height of the topline in

this interval is equal to the maximum and therefore to the number of drivers. This is illustrated

in Figure 13.

In Section 5.3.7 we will present an adaption to the Equations (43) and (44) such that it also

takes into account the bias and the critical interval of the incumbent solution. In Section 5.4 we

will visualize the updating mechanism.

5.3.2 The intermediate solution y

The intermediate solution y is the set of trailer routes. We will not go into details about the

mathematical representation of y. Instead, we explain and visualize the intermediate solution

(corresponding to the solution in Figure 10) in Figure 14. The dark colored bars represent the

trailer route sections as they are planned, while the corresponding lighter bars represent the

earliest start time and latest completion time of these sections. These are the intervals in which

5 THE RESOURCE ASSIGNMENT PROBLEM 42

the sections can be shifted without violating the time window constraints. As with the final

solution, the small dark areas outlined by dashes indicate the breaks. These are the breaks that

would be required if each trailer is driven by a single driver, but these may be changed in the

second phase depending on the driver assignment.

Figure 14: y: trailer routes with sections

5.3.3 The cost metric c1

The cost metric c1 is the estimated number of drivers, which follows from the lower bound line

and the bias line as we explained.

5 THE RESOURCE ASSIGNMENT PROBLEM 43

5.3.4 The function F1

The function F1 creates the trailer routes by taking into account the objective c1. This means

that we modify the parallel cheapest insertion heuristic such that it minimizes the estimated

topline. Although formally the topline is evaluated only at the critical interval, we try not to

sacrifice other intervals by minimizing the topline in general. To do so we keep track of the

topline at any stage during the execution of the heuristic. This means that we start with an

empty lower bound, such that initially the topline is equal to the bias. Then, if we insert a stop

to the route, we update the lower bound and as a result the topline. With each next insertion, we

add a cost such that insertion is less attractive in intervals at which the topline has a high value.

This results in a topline that is more spread over the time horizon. We repeat the procedure five

times with different weights for the topline insertion costs compared to the default insertion costs

such that we find five different solutions. The output of F1 is defined as the one that minimizes

c̃1, the average height of the estimated topline in the critical interval.

5.3.5 The function F2

The function F2 applies the column generation approach to create optimal driver assignments

and breaks for the trailer routes in y.

5.3.6 The a priori belief c̃1

A priori, we have no belief for c̃1, since we cannot say anything about the number of drivers or

make assumptions about the bias. Therefore, we execute F1 the first time normally without a

bias and take as a measure the number of trailers.

5.3.7 The updating mechanism of c̃1

As we described, the bias and critical interval can be observed from solution z after the second

phase. Therefore the updating mechanism consists of observing the bias and the critical interval

and setting these as the parameters for c̃1. Since the lower bound is the same for both phases,

by definition it holds that c̃1(x, ŷ) = c(x, ẑ) after the update.

Let c̃1 always represent the incumbent During experiments we found that the method

does not converge. This is the same problem as we initially had with the CVRP and therefore

we tried a similar solution: to always let c̃1 represent the incumbent. However, with the GAP

5 THE RESOURCE ASSIGNMENT PROBLEM 44

this is theoretically not possible due to the structural properties of c̃1. In other words, since the

lower bound line does not uniquely determine the intermediate solution y, we can theoretically

have a last solution ẑ and an incumbent solution z∗ such that the lower bounds are equal while

c̃1(x, ẑ) 6= c̃1(x, z∗). Therefore, with the structure for c̃1 we have chosen, we cannot formally

constraint this. However, we can informally let the incumbent influence the solution found by

F1, by considering also the bias and critical interval from the incumbent z∗.

In order to take into account the incumbent bias and critical interval, we adapt F1 such that

the five different repetitions use different combinations of weights for the toplines based on the

incumbent bias and the last solution bias. Since we have two biases and two critical intervals,

we are able to calculate four values that could be estimates for c̃1. However, if we observe that

the average height of the topline is the sum of the average height of the lower bound line and

the average height of the biasline, we can subtract the average height of the bias line to remain

with two different values: the average height of the lower bound line in the two critical intervals.

Now we redefine c̃1 to be a linear combination of the two values. Now let I1 be the critical

interval corresponding to the incumbent z∗ and I2 the interval corresponding to the last solution

ẑ, and let hlb(I, z) be the average height of the lower bound line for solution z in the interval

I. By solving the linear system of Equations (45) and (46), we can find weights α1 and α2

corresponding to I1 and I2 such that c̃1(x, y∗) = c(x, z∗) and c̃1(x, ŷ) = c(x, ẑ), if these exist.

Otherwise, we relax the first equation and set α1 = 0, α2 = c(x,ẑ)
hlb(I2,ẑ)

.

α1h
lb(I1, z

∗) + α2h
lb(I2, z

∗) = c(x, z∗) (45)

α1h
lb(I1, ẑ) + α2h

lb(I2, ẑ) = c(x, ẑ) (46)

Using the values for α1 and α2, c̃1 becomes

c̃1(x, y) = α1h
lb(I1, z) + α2h

lb(I2, z). (47)

Although using Equation (47) for c̃1(x, y) means that the incumbent is represented, it does

not guarantee that in the first phase always a solution ŷ is found for which c̃1(x, ŷ) < c̃1(x, y∗).

This is because the heuristic using five repetitions with different parameters is a very simple

way to explore the solution space. Again, we compare with the CVRP, where for the CCLP we

used a solver with the incumbent inserted. That basically meant that the solver tries to find a

solution with a lower objective value, but returns the incumbent if none is found. We can define

F1 to do the same thing here: try to find a solution for which c̃1(x, ŷ) < c̃1(x, y∗), but return

5 THE RESOURCE ASSIGNMENT PROBLEM 45

y∗ if none is found. This then automatically terminates the procedure. Formally, this requires

that c̃1(x, y∗) = c(x, z∗), although this cannot be guaranteed if we limit c̃1 to be written as in

Equation (47). However, we can model this situation to fit within the framework by redefining

c̃1 as

c̃1(x, y) =

c(x, z
∗) if y ≡ y∗

α1h
lb(I1, z) + α2h

lb(I2, z) otherwise.

(48)

This is impractical since it introduces additional discontinuity in c̃1 which will jeopardize the

feedback mechanism, but it shows that the framework for the feedback mechanism does not

forbid these imperfections to exist.

5.4 Simple feedback mechanism for the resource assignment problem

Filling in the steps from Section 5.3 in the algorithm in Section 2.5 results in Algorithm 4 for

the resource assignment problem.

Algorithm 4 Simple feedback mechanism.
1: procedure SimpleFeedbackRAP(x)

2: y∗ ← createTrailerRoutesUsingDefaultCostMetric(x)

3: z∗ ← createDriverAssignmentsForTrailerRoutes(x, y∗)

4: c̃1 ← getBiasAndCriticalIntervalFromSolution(x, z∗)

5: while true do

6: ŷ ← createTrailerRoutesUsingC1(x, c̃1)

7: if c̃1(x, ŷ) > c(x, z∗) then return

8: end if

9: ẑ ← createDriverAssignmentsForTrailerRoutes(x, ŷ)

10: if c(x, ẑ) < c(x, z∗) then

11: y∗ ← ŷ

12: z∗ ← ẑ

13: c̃1 ← getBiasAndCriticalIntervalFromSolution(x, z∗)

14: else

15: c̃1 ← getBiasAndCriticalIntervalFromSolutions(x, z∗, ẑ)

16: end if

17: end while

18: end procedure

Figure 15 illustrates the process for the example in Figure 10. Each column corresponds to

an iteration. The first row illustrates the lower bound, the bias and the resulting topline in

the first phase, while the second row illustrates the lower bound with the observed topline and

5 THE RESOURCE ASSIGNMENT PROBLEM 46

Figure 15: Illustration of the simple feedback mechanism using the topline

the resulting bias after the second phase. The black dashed line is the estimate c̃1, which is a

linear combination of the average height of the lower bound in the critical intervals. Only in

iteration 6, there are two intervals, since iteration 2 is the first where the result is worse than

the incumbent2. For the first phase in the first iteration, there is no visualization, since there is

no bias yet.

5.5 Experiments

In order to test the simple feedback mechanism for the RAP, we use the 56 problem instances

from Visser (2014). We let the solution from Visser be the initial solution, and compare it with

the results of running the simple feedback mechanism until convergence, or a maximum of 10

iterations. In order to evaluate our convergence criterium, we also compare the result with the

2The number of trailers, although not visualized, is used as a tie-breaker, such that iteration 2 is a strict

improvement over iteration 1 even though the number of drivers is equal.

5 THE RESOURCE ASSIGNMENT PROBLEM 47

result if we always run the mechanism for 10 iterations.

5.5.1 Results

In Table 7 the results are presented for the different instances. The numbers between brackets

are the numbers of trailers, which are just shown to indicate that a better solution in terms of

drivers, on average, also means that fewer trailers are used. In other words, it does not require

more trailers to achieve a more efficient solution in terms of number of drivers.

From the table it can be observed that for a number of instances the feedback mechanism is

able to improve on the initial solution, typically using one or two drivers less. Instance C104 in

the table is the example in Figure 10, and the best solution found for this instance is visualized

in Figure 16. The relative improvement may be small (4.96 % until convergence and 7.55 %

after 10 iterations), but in absolute terms this is significant. Although the optimal solution

is not known, it is very likely that using some lower bound it can be shown that gap with the

optimal solution (the number of ‘extra’ drivers due to inefficient planning) after the improvement

decreases significantly. The difference between 4.96 % and 7.55 % show that the convergence

criterium can still be improved, since the mechanism in some cases stops too early. However,

trading off the number of iterations against the obtained solution quality the criterium serves

a clear purpose: it enables us to find (on average) 4.96 % improvement in (on average) 3.7

iterations while in order to find 7.55 % improvement we would need 10 iterations.

In Table 7 also the iterations in which the best solutions were found are presented, as well as

the number of iterations until convergence. Note that the number of iterations until convergence

is always more than the number of the iteration in which the best solution was found, since we

always need an extra iteration to find out that, according to the belief c̃1, the solution cannot

be improved. We see that on average, the best solution is found within a few iterations, which

means that also with limited time improvements in solution quality can be made.

Although the number of trailers is formally not an objective, we see as a side effect that

this also decreases using the simple feedback mechanism, solely by using it as a tie breaker for

solutions with the same number of drivers. Even for some of the instances for which we cannot

find an improvement in the number of drivers, the number of trailers is decreased.

5 THE RESOURCE ASSIGNMENT PROBLEM 48

Figure 16: The initial solution (left, 17 trailers, 14 drivers) and the best solution (right, 15

trailers, 12 drivers) found for the C104 instance

5 THE RESOURCE ASSIGNMENT PROBLEM 49

Instance Initial solution Stopping criteria 10 iterations
Drv (Trl) Drv (Trl) Impr. Found Stop Drv (Trl) Impr. Found

C101 21 (23) 20 (23) 4.76 % 2 8 19 (22) 9.52 % 9
C102 19 (22) 17 (19) 10.53 % 3 4 17 (19) 10.53 % 3
C103 18 (21) 15 (18) 16.67 % 3 5 15 (16) 16.67 % 6
C104 14 (17) 12 (15) 14.29 % 4 6 12 (15) 14.29 % 4
C105 19 (23) 19 (23) 0.00 % 1 2 18 (21) 5.26 % 5
C106 21 (24) 20 (23) 4.76 % 2 4 18 (22) 14.29 % 8
C107 21 (22) 19 (23) 9.52 % 2 3 19 (23) 9.52 % 2
C108 18 (22) 18 (22) 0.00 % 1 2 18 (22) 0.00 % 1
C109 16 (19) 16 (19) 0.00 % 1 4 16 (19) 0.00 % 1
C201 17 (20) 17 (20) 0.00 % 1 2 16 (20) 5.88 % 3
C202 17 (19) 15 (16) 11.76 % 2 4 15 (16) 11.76 % 2
C203 15 (19) 13 (15) 13.33 % 2 4 12 (15) 20.00 % 10
C204 13 (16) 12 (14) 7.69 % 2 3 12 (14) 7.69 % 2
C205 18 (20) 16 (19) 11.11 % 2 3 15 (19) 16.67 % 3
C206 15 (18) 15 (18) 0.00 % 1 2 15 (17) 0.00 % 2
C207 16 (17) 14 (16) 12.50 % 3 5 14 (16) 12.50 % 3
C208 15 (17) 14 (17) 6.67 % 2 5 14 (17) 6.67 % 2
R101 23 (23) 22 (22) 4.35 % 2 4 21 (22) 8.70 % 7
R102 21 (21) 19 (21) 9.52 % 5 6 19 (21) 9.52 % 5
R103 18 (19) 16 (17) 11.11 % 2 3 15 (16) 16.67 % 6
R104 13 (16) 13 (15) 0.00 % 3 4 12 (14) 7.69 % 6
R105 18 (20) 18 (20) 0.00 % 1 2 18 (19) 0.00 % 2
R106 18 (19) 16 (18) 11.11 % 3 7 16 (18) 11.11 % 3
R107 16 (18) 15 (16) 6.25 % 3 4 14 (15) 12.50 % 10
R108 13 (15) 12 (14) 7.69 % 4 5 12 (14) 7.69 % 4
R109 15 (17) 15 (17) 0.00 % 1 5 15 (17) 0.00 % 1
R110 15 (18) 15 (18) 0.00 % 1 2 15 (18) 0.00 % 1
R111 15 (17) 15 (17) 0.00 % 1 2 15 (16) 0.00 % 2
R112 14 (15) 14 (15) 0.00 % 1 2 14 (15) 0.00 % 1
R201 19 (19) 17 (18) 10.53 % 2 3 16 (18) 15.79 % 8
R202 17 (17) 14 (18) 17.65 % 2 - 14 (18) 17.65 % 10
R203 14 (15) 13 (14) 7.14 % 2 3 12 (15) 14.29 % 5
R204 13 (15) 11 (12) 15.38 % 4 5 11 (12) 15.38 % 4
R205 14 (16) 14 (16) 0.00 % 1 2 14 (16) 0.00 % 1
R206 12 (16) 12 (16) 0.00 % 1 2 12 (16) 0.00 % 1
R207 13 (14) 12 (15) 7.69 % 2 3 11 (14) 15.38 % 8
R208 11 (12) 11 (12) 0.00 % 1 3 11 (12) 0.00 % 1
R209 14 (16) 14 (16) 0.00 % 1 3 14 (15) 0.00 % 3
R210 14 (15) 14 (15) 0.00 % 1 5 13 (15) 7.14 % 7
R211 13 (14) 12 (14) 7.69 % 2 3 12 (13) 7.69 % 3
RC101 26 (28) 24 (26) 7.69 % 6 7 24 (26) 7.69 % 6
RC102 22 (24) 22 (24) 0.00 % 1 3 21 (22) 4.55 % 4
RC103 19 (22) 18 (19) 5.26 % 2 3 17 (19) 10.53 % 9
RC104 17 (20) 16 (17) 5.88 % 5 6 15 (16) 11.76 % 9
RC105 23 (24) 23 (24) 0.00 % 1 2 23 (24) 0.00 % 1
RC106 22 (24) 22 (24) 0.00 % 1 2 21 (23) 4.55 % 3
RC107 20 (22) 19 (20) 5.00 % 3 5 19 (20) 5.00 % 3
RC108 20 (22) 20 (22) 0.00 % 1 2 18 (22) 10.00 % 3
RC201 22 (23) 22 (23) 0.00 % 1 2 21 (23) 4.55 % 5
RC202 18 (21) 18 (21) 0.00 % 1 2 18 (18) 0.00 % 5
RC203 16 (19) 16 (17) 0.00 % 2 4 15 (17) 6.25 % 9
RC204 14 (16) 14 (16) 0.00 % 1 3 14 (16) 0.00 % 1
RC205 21 (21) 18 (20) 14.29 % 3 5 18 (20) 14.29 % 3
RC206 20 (21) 20 (21) 0.00 % 1 2 17 (18) 15.00 % 3
RC207 17 (19) 17 (18) 0.00 % 2 4 17 (18) 0.00 % 2
RC208 15 (16) 15 (16) 0.00 % 1 3 15 (16) 0.00 % 1
Average 4.96 % 2.0 3.7 7.55 % 4.1

Table 7: Results for the resource assignment problem

6 DISCUSSION 50

6 Discussion

The simple feedback mechanism turned out to be very effective for the three problems we have

studied. Inspired by a theoretical framework for a feedback mechanism we looked into ways to

implement the mechanism for three different problems, with different levels of difficulty. Some

compromises had to be made which resulted in final implementations deviating from the theoret-

ical concept. However, inspired by the theoretical concept, we succeeded in the goal of developing

a mechanism that improves a solution in a few iterations using a simple feedback mechanism,

without deep knowledge of the optimization techniques used in each phase.

We have seen that the efforts to achieve some sort of convergence increase with the complexity

of the problem. The pallet matching problem is a very pure problem, upon which the feedback

mechanism could be applied very effectively since the relation between the first phase and the

second phase can be observed on a very detailed level. This is because the final costs can be

decomposed into costs for each request matching. With the CVRP, the costs can be decomposed

into costs for each route or cluster, but not for the individual assignment of locations to a seed.

Therefore we needed to impose an extra constraint in the updating mechanism in order to ensure

that we did not loose valuable information about the best solution so far. For the RAP, we needed

to artificially introduce the relation between the two phases, since this could only be observed

indirectly and for the solution as a whole.

Although the application of the framework varies for the three different problem, we can

make one key observation. For each method, the entire two phase procedure is repeated, with an

updated cost metric c̃1 based on previous observations. None of the methods is based on heuris-

tically ‘fixing’ suboptimalities in a solution. This is an advantage, since such heuristics usually

take into account very specific details of the problem (for example specific driver regulations).

This means that with different constraints the method may no longer be applicable. The simple

feedback mechanism only observes the result and from a global perspective repeats the proce-

dure with different information such that alternatives are explored. The details are indirectly

represented through the information that is passed to following iterations via the belief c̃1.

6.1 Conditions for the simple feedback mechanism

We have identified a number of ingredients that need to be defined in order to apply the simple

feedback mechanism to an arbitrary two phase problem. Based on the results, we can formulate

a number of conditions that influence the quality of the feedback mechanism.

6 DISCUSSION 51

• The structural quality of c̃1. How well is it possible to capture the essence of the

problem in the first phase?

• The quality of F1 and F2. Obviously, if F2 is able to find good quality solutions, this is

reflected in the overall solution quality since the overall solution is the direct result of F2 for

any intermediate solution. With the CVRP we have seen that also a better quality solution

(a lower optimality gap) for the first subproblem results in a better overall solution.

• The effectiveness of the updating mechanism. Ideally the updating mechanism

should only update c̃1 according to what is observed and leave unchanged what is unob-

served, on a level as detailed as possible. It should positively reinforce good decisions and

negatively reinforce bad decisions. In other words, if c̃1 is updated because a part of the

solution y is considered good, then it should be likely that that part of the solution is also

good in other (unobserved) solutions, and vice versa.

• The level of optimism in the a priori belief c̃1. A higher optimism directs towards a

more global search, although it may also direct the feedback mechanism in a wrong direction

depending on the effectiveness of the updating mechanism (see the previous point).

6.2 Further research

First of all, further research could focus on further applications of the framework, for empirical

evidence of the value of the framework. The results achieved with the RAP, which is a combi-

nation of a routing problem and a scheduling problem with additional constraints, indicate that

it may be possible to apply the framework to many more multi phased problems that occur in

practice. With respect to the framework itself, we ask a number of question which may serve as

starting points for further research.

• How to define formal proofs and conditions for convergence of the mechanism?

• How to redefine c̃1 such that it is not required to actually represent the true objective

function, but only induces the precedence relation on y? In other words, rather than using

Proposition 3, we use the less restrictive Proposition 2, which means that we only require

that c̃1(x, y) < c̃1(x, y′) if c(x, z) < c(x, z′), where z = F2(x, y) and z′ = F2(x, y′). This

gives more freedom but therefore it requires careful thought on how this should be imple-

mented and how convergence should be achieved or stopping criteria should be applied.

6 DISCUSSION 52

• How to apply the framework for a problem where we formally want to take into account

multiple objectives? The obvious solution is to use some cost function that scores a solution,

but such a cost function is always means that there is a ‘less natural’ relation between y

and c(x, z). Possibly there are alternatives, such as not requiring c̃1 to exactly represent

the true objective function (see previous question).

• How to apply a hybrid use of optimal approaches and heuristics for the first and second

subproblem? For instance, it may be possible to use heuristics for either F1 or F2 for the

first iterations to quickly improve the solution, and use computationally more expensive

approaches to find better solutions once the largest and obvious steps have been made.

How does this influence the overall solution quality compared to the total computation

time required?

A RESULTS CVRP 53

A Results CVRP

This Appendix contains the full factorial design results for the different instances presented in

Table 6.

Instance vrp1-50

Parameters Initial solution Incumbent Convergence

Method Update Tol. γ Val Gap Val Gap It Time

‘Optimal’ ‘Initial’ 20.0 % 0.60 538.25 2.60 % 538.25 2.60 % 2 0.4 s

0.80 593.75 13.18 % 593.75 13.18 % 2 0.4 s

5.0 % 0.60 538.25 2.60 % 524.61 0.00 % 4 0.8 s

0.80 539.22 2.78 % 539.22 2.78 % 2 0.4 s

‘Last’ 20.0 % 0.60 538.25 2.60 % 538.25 2.60 % 2 0.4 s

0.80 593.75 13.18 % 593.75 13.18 % 2 0.4 s

5.0 % 0.60 538.25 2.60 % 524.61 0.00 % 4 0.8 s

0.80 539.22 2.78 % 539.22 2.78 % 2 0.4 s

‘Christof.’ ‘Initial’ 20.0 % 0.60 594.86 13.39 % 594.86 13.39 % 2 0.3 s

0.80 643.69 22.70 % 643.69 22.70 % 2 0.3 s

5.0 % 0.60 594.86 13.39 % 578.50 10.27 % 7 1.5 s

0.80 600.70 14.50 % 600.70 14.50 % 5 0.8 s

‘Last’ 20.0 % 0.60 594.86 13.39 % 594.86 13.39 % 2 0.3 s

0.80 643.69 22.70 % 643.69 22.70 % 2 0.3 s

5.0 % 0.60 594.86 13.39 % 578.50 10.27 % 7 1.5 s

0.80 600.70 14.50 % 600.70 14.50 % 5 0.8 s

Instance vrp2-75

Parameters Initial solution Incumbent Convergence

Method Update Tol. γ Val Gap Val Gap It Time

‘Optimal’ ‘Initial’ 20.0 % 0.60 876.82 4.98 % 848.71 1.61 % 28 875.0 s

0.80 853.24 2.15 % 841.93 0.80 % 9 177.9 s

5.0 % 0.60 869.50 4.10 % 841.93 0.80 % 22 758.2 s

0.80 841.93 0.80 % 841.93 0.80 % 13 361.2 s

‘Last’ 20.0 % 0.60 876.82 4.98 % 842.85 0.91 % 21 461.6 s

0.80 853.24 2.15 % 845.91 1.27 % 5 57.2 s

5.0 % 0.60 869.50 4.10 % 854.86 2.35 % 26 638.6 s

0.80 841.93 0.80 % 841.93 0.80 % 7 137.5 s

‘Christof.’ ‘Initial’ 20.0 % 0.60 931.62 11.54 % 872.70 4.48 % 26 653.4 s

0.80 899.84 7.73 % 867.93 3.91 % 7 109.9 s

5.0 % 0.60 930.68 11.42 % 867.78 3.89 % 20 540.5 s

0.80 887.32 6.23 % 865.02 3.56 % 19 467.3 s

‘Last’ 20.0 % 0.60 931.62 11.54 % 882.68 5.68 % 24 585.4 s

0.80 899.84 7.73 % 863.77 3.41 % 12 148.5 s

5.0 % 0.60 930.68 11.42 % 864.33 3.48 % 29 782.7 s

0.80 887.32 6.23 % 874.47 4.69 % 16 319.9 s

A RESULTS CVRP 54

Instance vrp3-100

Parameters Initial solution Incumbent Convergence

Method Update Tol. γ Val Gap Val Gap It Time

‘Optimal’ ‘Initial’ 20.0 % 0.60 868.91 5.18 % 849.95 2.88 % 9 27.4 s

0.80 887.28 7.40 % 887.28 7.40 % 3 3.5 s

5.0 % 0.60 864.44 4.64 % 839.61 1.63 % 44 1243.4 s

0.80 858.54 3.92 % 845.31 2.32 % 100 1984.1 s

‘Last’ 20.0 % 0.60 868.91 5.18 % 850.82 2.99 % 5 19.4 s

0.80 887.28 7.40 % 887.28 7.40 % 3 3.5 s

5.0 % 0.60 864.44 4.64 % 848.92 2.76 % 26 753.9 s

0.80 858.54 3.92 % 832.43 0.76 % 8 169.7 s

‘Christof.’ ‘Initial’ 20.0 % 0.60 933.55 13.00 % 911.99 10.39 % 9 18.5 s

0.80 967.06 17.06 % 937.57 13.49 % 5 12.9 s

5.0 % 0.60 947.39 14.68 % 876.77 6.13 % 29 895.7 s

0.80 930.86 12.68 % 876.51 6.10 % 24 433.2 s

‘Last’ 20.0 % 0.60 933.55 13.00 % 911.99 10.39 % 9 17.1 s

0.80 967.06 17.06 % 961.44 16.38 % 5 6.7 s

5.0 % 0.60 947.39 14.68 % 883.02 6.89 % 18 558.7 s

0.80 930.86 12.68 % 891.45 7.91 % 11 234.1 s

Instance vrp4-100

Parameters Initial solution Incumbent Convergence

Method Update Tol. γ Val Gap Val Gap It Time

‘Optimal’ ‘Initial’ 20.0 % 0.60 832.83 1.62 % 828.26 1.06 % 4 18.4 s

0.80 862.33 5.22 % 862.33 5.22 % 2 5.1 s

5.0 % 0.60 832.83 1.62 % 826.14 0.80 % 10 262.7 s

0.80 832.83 1.62 % 826.90 0.90 % 4 68.6 s

‘Last’ 20.0 % 0.60 832.83 1.62 % 828.26 1.06 % 4 18.2 s

0.80 862.33 5.22 % 862.33 5.22 % 2 5.0 s

5.0 % 0.60 832.83 1.62 % 826.74 0.88 % 5 136.1 s

0.80 832.83 1.62 % 826.90 0.90 % 4 69.2 s

‘Christof.’ ‘Initial’ 20.0 % 0.60 862.68 5.26 % 857.47 4.63 % 10 71.5 s

0.80 892.78 8.93 % 886.99 8.23 % 6 8.7 s

5.0 % 0.60 862.68 5.26 % 855.41 4.37 % 100 3304.5 s

0.80 862.68 5.26 % 856.89 4.56 % 5 100.3 s

‘Last’ 20.0 % 0.60 862.68 5.26 % 856.28 4.48 % 7 50.0 s

0.80 892.78 8.93 % 886.99 8.23 % 6 8.8 s

5.0 % 0.60 862.68 5.26 % 855.64 4.40 % 13 340.7 s

0.80 862.68 5.26 % 856.89 4.56 % 5 101.9 s

A RESULTS CVRP 55

Instance vrp5-120

Parameters Initial solution Incumbent Convergence

Method Update Tol. γ Val Gap Val Gap It Time

‘Optimal’ ‘Initial’ 20.0 % 0.60 1045.46 0.32 % 1045.40 0.32 % 12 159.6 s

0.80 1052.54 1.00 % 1052.54 1.00 % 2 21.6 s

5.0 % 0.60 1045.46 0.32 % 1045.42 0.32 % 17 992.1 s

0.80 1052.54 1.00 % 1044.54 0.23 % 14 868.5 s

‘Last’ 20.0 % 0.60 1045.46 0.32 % 1044.16 0.20 % 9 109.2 s

0.80 1052.54 1.00 % 1052.54 1.00 % 2 21.6 s

5.0 % 0.60 1045.46 0.32 % 1044.16 0.20 % 18 1007.6 s

0.80 1052.54 1.00 % 1045.42 0.32 % 7 428.5 s

‘Christof.’ ‘Initial’ 20.0 % 0.60 1086.84 4.29 % 1080.78 3.71 % 9 163.4 s

0.80 1091.05 4.70 % 1091.05 4.70 % 6 26.4 s

5.0 % 0.60 1086.84 4.29 % 1080.78 3.71 % 18 1057.7 s

0.80 1091.05 4.70 % 1084.85 4.10 % 10 565.3 s

‘Last’ 20.0 % 0.60 1086.84 4.29 % 1082.27 3.85 % 8 133.5 s

0.80 1091.05 4.70 % 1091.05 4.70 % 6 26.3 s

5.0 % 0.60 1086.84 4.29 % 1083.09 3.93 % 17 998.9 s

0.80 1091.05 4.70 % 1084.85 4.10 % 10 553.6 s

Instance vrp6-150

Parameters Initial solution Incumbent Convergence

Method Update Tol. γ Val Gap Val Gap It Time

‘Optimal’ ‘Initial’ 20.0 % 0.60 1099.57 6.92 % 1052.73 2.36 % 33 2676.2 s

0.80 1077.00 4.72 % 1060.12 3.08 % 6 48.8 s

5.0 % 0.60 1099.57 6.92 % 1045.92 1.70 % 22 2583.0 s

0.80 1076.66 4.69 % 1060.24 3.09 % 9 825.2 s

‘Last’ 20.0 % 0.60 1099.57 6.92 % 1060.90 3.16 % 13 1199.8 s

0.80 1077.00 4.72 % 1061.21 3.19 % 5 45.3 s

5.0 % 0.60 1099.57 6.92 % 1045.49 1.66 % 28 3106.2 s

0.80 1076.66 4.69 % 1053.24 2.41 % 10 897.0 s

‘Christof.’ ‘Initial’ 20.0 % 0.60 1167.38 13.51 % 1115.26 8.44 % 18 1214.9 s

0.80 1160.93 12.88 % 1125.49 9.44 % 14 120.2 s

5.0 % 0.60 1167.38 13.51 % 1109.44 7.88 % 46 5455.3 s

0.80 1146.75 11.51 % 1115.43 8.46 % 15 1379.7 s

‘Last’ 20.0 % 0.60 1167.38 13.51 % 1100.64 7.02 % 26 1480.7 s

0.80 1160.93 12.88 % 1131.99 10.07 % 9 94.8 s

5.0 % 0.60 1167.38 13.51 % 1105.68 7.51 % 38 4516.7 s

0.80 1146.75 11.51 % 1103.84 7.33 % 13 1100.7 s

REFERENCES 56

References

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. H. Vance. Branch-

and-price: Column generation for solving huge integer programs. Operations research, 46(3):

316–329, 1998.

R. Bellman. Dynamic programming and lagrange multipliers. Proceedings of the National

Academy of Sciences of the United States of America, 42(10):767, 1956.

J. Bramel and D. Simchi-Levi. A location based heuristic for general routing problems. Operations

research, 43(4):649–660, 1995.

N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.

Technical report, DTIC Document, 1976.

N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. OR, pages

309–318, 1969.

P. Crescenzi and V. Kann. A compendium of np optimization problems, 1995.

L. Davis et al. Handbook of genetic algorithms, volume 115. Van Nostrand Reinhold New York,

1991.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1

(1):269–271, 1959.

M. L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle routing. Networks,

11(2):109–124, 1981.

F. Glover and M. Laguna. Tabu search. Springer, 1999.

I. Gurobi Optimization. Gurobi optimizer reference manual, 2014. URL http://www.gurobi.

com.

A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. Neural

Networks, IEEE Transactions on, 10(3):626–634, 1999.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.

Proceedings of the American Mathematical society, 7(1):48–50, 1956.

http://www.gurobi.com
http://www.gurobi.com

REFERENCES 57

E. L. Lawler, J. K. Lenstra, A. R. Kan, and D. B. Shmoys. The traveling salesman problem: a

guided tour of combinatorial optimization, volume 3. Wiley New York, 1985.

LEMON. Library of efficient models and optimization in networks, 2014. URL http://lemon.

cs.elte.hu/pub/doc/latest-svn/index.html.

S. Martello and P. Toth. Knapsack problems. Wiley New York, 1990.

G. Pataki. Teaching integer programming formulations using the traveling salesman problem.

SIAM review, 45(1):116–123, 2003.

R. C. Prim. Shortest connection networks and some generalizations. Bell system technical

journal, 36(6):1389–1401, 1957.

P. Toth and D. Vigo. The vehicle routing problem. Siam, 2001.

P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. Springer, 1987.

J. Venn. I. on the diagrammatic and mechanical representation of propositions and reasonings.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(59):

1–18, 1880.

T. R. Visser. Synchronization in simultaneous vehicle routing and crew scheduling problems with

breaks. Master’s thesis, Utrecht University, 2014. To appear in 2015.

http://lemon.cs.elte.hu/pub/doc/latest-svn/index.html
http://lemon.cs.elte.hu/pub/doc/latest-svn/index.html

	Introduction
	Theoretical framework
	Notation
	Optimality of the solution
	The feedback mechanism
	Optimistic a priori belief
	The algorithm

	The pallet matching problem
	The problem
	Mathematical problem formulation
	Decomposition of the problem
	Filling in the ingredients
	Simple feedback mechanism for the pallet matching problem
	Variant: a heuristic approach for the second subproblem
	Experiments

	The capacitated vehicle routing problem
	The problem
	Mathematical problem formulation
	Decomposition of the problem
	Filling in the ingredients
	Simple feedback mechanism for the CVRP
	Variant: a heuristic approach for the second subproblem
	Experiments

	The resource assignment problem
	The problem
	Decomposition of the problem
	Filling in the ingredients
	Simple feedback mechanism for the resource assignment problem
	Experiments

	Discussion
	Conditions for the simple feedback mechanism
	Further research

	Results CVRP
	References

